Person: ŞAHİN, ALİ
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ŞAHİN
First Name
ALİ
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease(MDPI, 2021-11-13) ŞAHİN, ALİ; Saylam, Ezgi; Akkaya, Yigit; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Sahin, Ali; Cam, Muhammmet Emin; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Ficai, Denisa; Ficai, AntonParkinson's disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson's disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson's disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100-200 mu m were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson's disease in neural tissue engineering applications.Publication Metadata only Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs(SAGE PUBLICATIONS INC) ŞAHİN, ALİ; Izgordu, Muhammet Sefa; Uzgur, Evren Isa; Ulag, Songul; Sahin, Ali; Yilmaz, Betul Karademir; Kilic, Beyhan; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, OguzhanThe aim of this study is to evaluate the mechanical and biological performance of cartilage-like constructs produced by 3D printing. During the investigation, poly(epsilon-caprolactone) (PCL) and polyvinylpyrrolidone (PVP) were used as a matrix polymer and low-molecular-weight chitosan (CS), hyaluronic acid (HA), and alginic acid sodium salt (SA) were integrated separately with the polymer matrix to fabricate the constructs. Thermal, mechanical, morphology, and chemical properties and swelling, degradation, and biocompatibility behaviors were evaluated in detail. With the addition of 3 fillers, the melting temperature of the matrix increased with the addition of fillers, and PCL/3wt.%PVP/1wt.%HA had the highest melting temperature value. Mechanical characterization results demonstrated that the printed PCL/3wt.%PVP/1wt.%CS displayed the highest compressive strength of around 9.51 MPa. The compressive strength difference between the PCL/3wt.%PVP and PCL/3wt.%PVP/1wt.%CS was 5.38 MPa. Biocompatibility properties of the constructs were tested by mitochondrial dehydrogenase activity, and in vitro studies showed that the PCL/3wt.%PVP/1wt.%HA composite construct had more cell viability than the other constructs by making use of the mesenchymal stem cell line.Publication Open Access 3D printed artificial cornea for corneal stromal transplantation(PERGAMON-ELSEVIER SCIENCE LTD, 2020-06) ŞAHİN, ALİ; Ulag, Songul; Ilhan, Elif; Sahin, Ali; Yilmaz, Betul Karademir; Kalaskar, Deepak M.; Ekren, Nazmi; Kilic, Osman; Oktar, Faik Nuzhet; Gunduz, OguzhanThe aim of this study is to understand the optical, biocompatible, and mechanical properties of chitosan (CS) and polyvinyl-alcohol (PVA) based corneal stroma constructs using 3D printing process. Corneal stroma is tested for biocompatibility with human adipose tissue-derived mesenchymal stem cells (hASCs). Physico-chemical and chemical characterization of the construct was performed using scanning electron microscopy (SEM), fourier transforms infrared spectroscopy (FTIR). Optical transmittance was analyzed using UV-Spectrophotometer. Results showed fabricated constructs have required shape and size. SEM images showed construct has thickness of 400 mu m. The FTIR spectra demonstrated the presence of various predicted peaks. The swelling and degradation studies of 13%(wt)PVA and 13%(wt)PVA/(1, 3, 5)%(wt)CS showed to have high swelling ratios of 7 days and degradation times of 30 days, respectively. The light transmittance values of the fabricated cornea constructs decreased with CS addition slightly. Tensile strength values decreased with increasing CS ratio, but we found to support intraocular pressure (IOP) which ranges from 12 to 22 mm-Hg. Preliminary biostability studies showed that composite constructs were compatible with hASCs even after 30 days' of degradation, showing potential for these cells to be differentiated to stroma layer in future. This study has implications for the rapid and custom fabrication of various cornea constructs for clinical applications.