Person:
ŞAHİN, ALİ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ŞAHİN

First Name

ALİ

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration
    (PERGAMON-ELSEVIER SCIENCE LTD, 2021) İNAN, AHMET TALAT; Saatcioglu, Elif; Ulag, Songul; Sahin, Ali; Yilmaz, Betul Karademir; Ekren, Nazmi; Inan, Ahmet Talat; Palaci, Yuksel; Ustundag, Cem Bulent; Gunduz, Oguzhan
    Tendon and ligament impairments are among the most familiar injuries of the knee with acute or chronic pain conditions. The defects of anterior cruciate ligament (ACL) stay a known clinical problem. In the present study, the electrospinning method was used to fabricate 10wt.%PCL/(1, 3, 5)wt.%Chitosan (CS) appropriate and biocompatible scaffolds with a similar connective ligament geometry and structure. 10wt.%PCL/3wt.%CS demonstrated higher tensile strength value (0.58854 MPa) than other scaffolds in the tensile test. Moreover, 10wt.%PCL/3wt.%CS scaffolds had high mesenchymal stem cells (MSCs) viability value for all incubation periods. Swelling and degradation behaviours of the ligament-like scaffolds were examined in vitro for 15 days. Results reported that the highest swelling ratio was observed with CS addition for 10wt.%PCL/5wt.%CS scaffolds which value nearly reached to the 270% ratio. Scanning electron microscope proved the geometry of the scaffolds, which were suitable for ligament-like tissue. Attachment of MSCs on the scaffolds proved the network-like structure of the cells on the scaffolds.
  • PublicationOpen Access
    3D printed artificial cornea for corneal stromal transplantation
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020-06) ŞAHİN, ALİ; Ulag, Songul; Ilhan, Elif; Sahin, Ali; Yilmaz, Betul Karademir; Kalaskar, Deepak M.; Ekren, Nazmi; Kilic, Osman; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    The aim of this study is to understand the optical, biocompatible, and mechanical properties of chitosan (CS) and polyvinyl-alcohol (PVA) based corneal stroma constructs using 3D printing process. Corneal stroma is tested for biocompatibility with human adipose tissue-derived mesenchymal stem cells (hASCs). Physico-chemical and chemical characterization of the construct was performed using scanning electron microscopy (SEM), fourier transforms infrared spectroscopy (FTIR). Optical transmittance was analyzed using UV-Spectrophotometer. Results showed fabricated constructs have required shape and size. SEM images showed construct has thickness of 400 mu m. The FTIR spectra demonstrated the presence of various predicted peaks. The swelling and degradation studies of 13%(wt)PVA and 13%(wt)PVA/(1, 3, 5)%(wt)CS showed to have high swelling ratios of 7 days and degradation times of 30 days, respectively. The light transmittance values of the fabricated cornea constructs decreased with CS addition slightly. Tensile strength values decreased with increasing CS ratio, but we found to support intraocular pressure (IOP) which ranges from 12 to 22 mm-Hg. Preliminary biostability studies showed that composite constructs were compatible with hASCs even after 30 days' of degradation, showing potential for these cells to be differentiated to stroma layer in future. This study has implications for the rapid and custom fabrication of various cornea constructs for clinical applications.