Person: KOYUNCUOĞLU, TÜRKAN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
KOYUNCUOĞLU
First Name
TÜRKAN
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Neuroprotective Effect of Cinnamaldehyde on Secondary Brain Injury After Traumatic Brain Injury in a Rat Model(ELSEVIER SCIENCE INC, 2021) YEGEN, BERRAK; Bektasoglu, Pinar Kuru; Koyuncuoglu, Turkan; Demir, Dilan; Sucu, Gizem; Akakin, Dilek; Eyuboglu, Irem Peker; Yuksel, Meral; Celikoglu, Erhan; Yegen, Berrak C.; Gurer, BoraOBJECTIVE: The aim of this study was to investigate the possible neuroprotective effects of cinnamaldehyde (CA) on secondary brain injury after traumatic brain injury (TBI) in a rat model. METHODS: Rats were randomly divided into 4 groups: control (n = 9), TBI (n = 9), vehicle (0.1% Tween 80; n = 8), and CA (100 mg/kg) (n = 9). TBI was induced by the weight-drop model. In brain tissues, myeloperoxidase ac-tivity and the levels of luminol-enhanced and lucigenin-enhanced chemiluminescence were measured. Inter-leukin 1b, interleukin 6, tumor necrosis factor a, tumor growth factor b, caspase-3, and cleaved caspase-3 were evaluated with an enzyme-linked immunosorbent assay method. Brain injury was histopathologically graded after hematoxylin-eosin staining. Y-maze and novel object recognition tests were performed before TBI and within 24 hours of TBI. RESULTS: Higher myeloperoxidase activity levels in the TBI group (P < 0.001) were suppressed in the CA group (P < 0.05). Luminol-enhanced and lucigenin-enhanced chem-iluminescence, which were increased in the TBI group (P < 0.001, for both), were decreased in the group that received CA treatment (P < 0.001 for both). Compared with the increased histologic damage scores in the cerebral cortex and dentate gyrus of the TBI group (P < 0.001), scores of the CA group were lower (P < 0.001). Decreased number of entries and spontaneous alternation percentage in the Y-maze test of the TBI group (P < 0.05 and P < 0.01, respec-tively) were not evident in the CA group. CONCLUSIONS: CA has shown neuroprotective effects by limiting neutrophil recruitment, suppressing reactive oxygen species and reducing histologic damage and acute hippocampal dysfunction.Publication Open Access Anti-inflammatory, antioxidant and neuroprotective effects of niacin on mild traumatic brain injury in rats(2023-01-01) KOYUNCUOĞLU, TÜRKAN; AKAKIN, DİLEK; ERZİK, CAN; YÜKSEL, MERAL; YEGEN, BERRAK; Ozaydin D., Bektasoglu P. K., Koyuncuoglu T., Ozkaya S. C., Koroglu A. K., AKAKIN D., ERZİK C., YÜKSEL M., YEGEN B., Gurer B.AIM: To study the effects of niacin, a water-soluble vitamin, on inflammation, oxidative stress and apoptotic processes observed after mild traumatic brain injury (TBI). MATERIAL and METHODS: A total of 25 Wistar albino male rats were randomly divided into control (n=9), TBI + Placebo group (n=9), TBI + niacin (500 mg/kg; n=7) groups. Mild TBI was performed under anesthesia by dropping a 300 g weight from a height of 1 meter onto the skull. Behavioral tests were applied before and 24 hours after TBI. Luminol and lucigenin levels and tissue cytokine levels were measured. Histopathological damage was scored in brain tissue. RESULTS: After mild TBI, luminol and lucigenin levels were increased (p<0.001), and their levels were decreased with niacin treatment (p<0.01-p<0.001). An increased score was obtained with trauma in the tail suspension test (p<0.01), showing depressive behavior. The number of entries to arms in Y-maze test were decreased in TBI group compared to pre-traumatic values (p<0.01), while discrimination (p<0.05) and recognition indices (p<0.05) in object recognition test were decreased with trauma, but niacin treatment did not change the outcomes in behavioral tests. Levels of the anti-inflammatory cytokine IL-10 were decreased with trauma, and increased with niacin treatment (p<0.05). The histological damage score was increased with trauma (p<0.001), and decreased with niacin treatment in the cortex (p<0.05), and hippocampal dentate gyrus region (p<0.01). CONCLUSION: Niacin treatment after mild TBI inhibited trauma-induced production of reactive oxygen derivatives and elevated the anti-inflammatory IL-10 level. Niacin treatment ameliorated the histopathologically evident damage.Publication Metadata only Neuroprotective effects of mildronate in a rat model of traumatic brain injury(ELSEVIER SCI LTD, 2019) YEGEN, BERRAK; Demir, Dilan; Bektasoglu, Pinar Kuru; Koyuncuoglu, Turkan; Kandemir, Cansu; Akakin, Dilek; Yuksel, Meral; Celikoglu, Erhan; Yegen, Berrak C.; Gurer, BoraObjective: Traumatic brain injury (TBI) is one of the most common preventable causes of mortality and morbidity. Inflammation, apoptosis, oxidative stress, and ischemia are some of the important pathophysiological mechanisms underlying neuronal loss after TBI. Mildronate is demonstrated to be beneficial in various experimental models of ischemic diseases via anti-inflammatory, antioxidant, and neuroprotective mechanisms. This study aimed to investigate possible antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects of mildronate in a rat model of TBI. Methods: A total of 46 male rats were divided into three groups of control, saline-treated TBI, and mildronate-treated TBI. Both TBI groups were subjected to closed-head contusive weight-drop injuries followed by treatment with saline or mildronate (100 mg/kg) administered intraperitoneally. The forebrain was removed 24h after trauma induction, the activities of myeloperoxidase (MPO) and caspase-3, levels of superoxide dismutase (SOD), luminol- and lucigenin-enhanced chemiluminescence were measured, and histomorphological evaluation of cerebral tissues was performed. Results: Increased MPO and caspase-3 activities in the vehicle-treated TBI group (p < 0.001) were suppressed in the mildronate-treated TBI group (p < 0.001). Similarly, increase in luminol and lucigenin levels (p < 0.001 and p < 0.01, respectively) in the vehicle-treated TBI group were decreased in the mildronatetreated TBI group (p < 0.001). Concomitantly, in the vehicle-treated TBI group, TBI-induced decrease in SOD activity (p < 0.01) was reversed with mildronate treatment (p < 0.05). On histopathological examination, TBI-induced damage in the cerebral cortex was lesser in the mildronate-treated TBI group than that in other groups. Conclusion: This study revealed for the first time that mildronate, exhibits neuroprotective effects against TBI because of its anti-inflammatory, antiapoptotic, and antioxidant activities. (C) 2019 Elsevier Ltd. All rights reserved.