Person: TATAR, ESRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TATAR
First Name
ESRA
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A Comparison Study of Fiber Diameter's Effect on Characteristic Features of Donepezil/Curcumin-Loaded Polycaprolactone/Polylactic Acid Nanofibers(2022-05-01) EKENTOK ATICI, CEYDA; GÜNDÜZ, OĞUZHAN; ÇAM, MUHAMMET EMİN; TATAR, ESRA; YAVUZ, AYŞE NUR; Aydin S., Kabaoglu I., Guler E., Topal F., YAVUZ A. N., EKENTOK ATICI C., TATAR E., Gurbuz F., GÜNDÜZ O., ÇAM M. E.Nanofibers (NFs) offer an alternative option for the treatment of Alzheimer\"s disease (AD) by addressing unmet clinical problems. In this study, anti-AD drugs, donepezil (DO) and curcumin (CUR), are loaded in polylactic acid/polycaprolactone NFs. The effect of fiber diameter on drug release behavior is mainly observed, and the successful loading of DO and CUR to NFs is demonstrated. The tensile strength of DO/CUR-loaded NFs (DNFs) with lower fiber diameter is found to be higher. The working temperature is increased by the decrease of glass transition temperature and increase of the melting temperature after loading drugs. Furthermore, the increase in the percentage of swelling and decrease in the degradation rate for NFs are observed due to the increase of fiber diameter. Encapsulation efficiency and burst release percentages for DNFs are augmented by the increase of fiber diameter. Nevertheless, DNFs exhibit a sustained drug release manner over 2 weeks. NFs do not demonstrate a toxic effect on L929 (mouse fibroblast) cells, and additionally, they promote cell proliferation. Considering all these results, it is proven that the fiber diameter affects all characteristic features of NFs, and DNFs lead to a new and promising drug delivery system for the treatment of AD.Publication Open Access Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance(2023-03-25) TATAR, ESRA; GÜNDÜZ, OĞUZHAN; Guler E., Nur Hazar-Yavuz A., TATAR E., Morid Haidari M., Sinemcan Ozcan G., DURUKSU G., Graça M. P. F., Kalaskar D. M., GÜNDÜZ O., Emin Cam M.Empagliflozin (EM) was successfully loaded in polycaprolactone/poly (L-lactic acid)/polymethyl methacrylate (PCL/PLA/PMMA) fibers. In the rat β-cell line (BRIN-BD11), the insulin expression ratio of pancreatic β-cells was stimulated at high and low glucose by culturing with tri-layer EM-loaded fiber (EMF) for 48 h. The expression ratios of glucokinase and GLUT-2 proteins increased after EMF treatment. According to the in vitro drug release test, 97% of all drug contained in fibers was released in a controlled manner for 24 h. The pharmacokinetic test revealed that the bioavailability was improved ∼4.8-fold with EMF treatment compared to EM-powder and blood glucose level was effectively controlled for 24 h with EMF. Oral administration of EMF exhibited a better sustainable anti-diabetic activity even in the half-dosage than EM-powder in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, PPAR-γ, and insulin were increased while the levels of SGLT-2 and TNF-α were decreased with EMF treatment. Also, EMF recovered the histopathological changes in the liver, pancreas, and kidney in T2DM rats and protected pancreatic β-cells. Consequently, EMF is suggested as an unprecedented and promotive treatment approach for T2DM with a higher bioavailability and better antidiabetic effect compared to conventional dosage forms.