Person: TATAR, ESRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TATAR
First Name
ESRA
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Determination of non-steroidal antiinflammatory drugs in equine biological samples by chromatographic methods [Yarış atlarında kullanımı suistimal edilen bazı non-steroidal antienflamatuvar ilaçların biyolojik örneklerden kromatografik yöntemlerle miktar tayini](Marmara University, 2012-01-01) TATAR, ESRA; Tatar E., Topçu S., Küçükgüzel I.In the knowledge that non-steroidal antiinflammatory drugs (NSAIDs) which are not included in the WADA's (World Anti-Doping Agency) list enacting doping substances and methods, have been abused in horse racing; a review on qualitative and quantitative determination of some of these non-steroidal antiinflammatory drugs (acetylsalicyclic acid, benzydamine, bufexamac, diclofenac sodium, diflunisal, eltenac, etodolac, etoricoxib, felbinac, phenylbutazone, flufenamic acid, flunixin, flurbiprofen, ibuprofen, indometacin, indoprofen, carprofen, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, meloxicam, mofebutazon, naproxen, niflumic acid, nimesulide, oxyphenbutazone, piroxicam, ramifenazone, selecoxib, sulindac, tenoxicam, tiaprofenic acid, tolfenamic acid, tolmetin, valdecoxib and vedaprofen) from biological samples of horses was gathered within the context of this work.Publication Open Access Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity(2022-11-01) BİNGÖL ÖZAKPINAR, ÖZLEM; KULABAŞ, NECLA; TATAR, ESRA; KÜÇÜKGÜZEL, İLKAY; Bulbul B., Ding K., Zhan C., Ciftci G., YELEKÇİ K., Gurboga M., BİNGÖL ÖZAKPINAR Ö., Aydemir E., Baybag D., ŞAHİN F., et al.Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 mu M, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 mu M. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.Publication Open Access Design, Synthesis, and Molecular Docking Studies of a Conjugated-Thiadiazole Thiourea Scaffold as Antituberculosis Agents(PHARMACEUTICAL SOC JAPAN, 2016) TATAR, ESRA; Tatar, Esra; Karakus, Sevgi; Kucukguzel, Sukriye Guniz; Okullu, Sinem Oktem; Unubol, Nihan; Kocagoz, Tanil; De Clercq, Erik; Andrei, Graciela; Snoeck, Robert; Pannecouque, Christophe; Kalayci, Sadik; Sahin, Fikrettin; Sriram, Dharmarajan; Yogeeswari, Perumal; Kucukguzel, IlkayIn view of the emergence and frequency of multidrug-resistant and extensively drug-resistant tuberculosis and consequences of acquired resistance to clinically used drugs, we undertook the design and synthesis of novel prototypes that possess the advantage of the two pharmacophores of thiourea and 1,3,4-thiadiazole in a single molecular backbone. Three compounds from our series were distinguished from the others by their promising activity profiles against Mycobacterium tuberculosis strain H(37)Rv. Compounds 11 and 19 were the most active representatives with minimum inhibitory concentration (MIC) values of 10.96 and 11.48 mu m, respectively. Compound 15 was shown to inhibit M. tuberculosis strain H(37)Rv with an MIC value of 17.81 mu m. Cytotoxicity results in the Vero cell line showed that these three derivatives had selectivity indices between 1.8 and 8.7. In order to rationalize the biological results of our compounds, molecular docking studies with the enoyl acyl carrier protein reductase (InhA) of M. tuberculosis were performed and compounds 11, 15, and 19 were found to have good docking scores in the range of -7.12 to -7.83 kcal/mol.Publication Open Access Synthesis, in vitro and in silico studies on novel 3-aryloxymethyl-5-[(2-oxo-2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as potent inhibitors of mPGES-1(2023-01-01) KULABAŞ, NECLA; TATAR, ESRA; KÜÇÜKGÜZEL, İLKAY; BİNGÖL ÖZAKPINAR, ÖZLEM; Erensoy G., Ding K., Zhan C., Çiftçi G., Yelekçi K., Duracık M., Bingöl Özakpınar Ö., Aydemir E., Yılmaz Z. N. , Şahin F., et al.Human microsomal prostaglandin E synthase (mPGES)-1 is a glutathione-dependent membrane-bound enzyme which is involved in the terminal stage of prostaglandin E2 (PGE2) synthesis. It has been well reported as a key target for the discovery of new anti-inflammatory and anti-cancer drugs. Specific inhibitors of mPGES-1 are anticipated to selectively restrain the generation of PGE2 induced by the inflammatory stimuli, without obstructing of the regular biosynthesis of other homeostatic prostanoids. Therefore, the design of mPGES-1 inhibitors can represent a better choice to take control of PGE2 associated diseases, compared with conventional non-steroidal anti-inflammatory drugs and cyclooxygenase (COX) inhibitors, which are known for their serious side effects. Although there is an intensive effort for the identification of mPGES-1 inhibitors, none of the unveiled molecules so far have reached the clinical market. Therefore, the development of novel mPGES-1 inhibitors with proper drug-like properties is still an unmet medical need. As a continuation of our research for the identification of new chemotypes which might inhibit this enzyme, we now report the design and synthesis of 3-aryloxymethyl-5-[(2-oxo2-arylethyl)sulfanyl]-1,2,4-triazoles and their oxime derivatives as inhibitors of human mPGES-1. All synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR (for compounds 12, 14, 15, 26, 27), HMBC (for compounds 6, 7, 8, 16, 19, 23, 28), and MS data. Twenty-four target compounds 7–30 were screened for their mPGES-1/COX-2 inhibitory activities as well as their cytotoxicity. Of these compounds, 20 and 24 showed potent mPGES-1 inhibition by IC50 values of 0.224±0.070 μM and 1.08±0.35 μM, respectively. These two compounds have also been observed to inhibit angiogenesis in matrigel tube formation assay with no toxicity toward HUVEC cells. In silico studies were also held to understand inhibition mechanisms of the most active compounds using molecular docking, molecular dynamics calculations and ADMET predictions.Publication Open Access 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase(ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2013-11) TATAR, ESRA; Kucukguzel, Ilkay; Satilmis, Gokhan; Gurukumar, K. R.; Basu, Amartya; Tatar, Esra; Nichols, Daniel B.; Talele, Tanaji T.; Kaushik-Basu, NeerjaHepatitis C virus (HCV) NS5B polymerase is an important and attractive target for the development of anti-HCV drugs. Here we report on the design, synthesis and evaluation of twenty-four novel allosteric inhibitors bearing the 4-thiazolidinone scaffold as inhibitors of HCV NS5B polymerase. Eleven compounds tested were found to inhibit HCV NS5B with IC50 values ranging between 19.8 and 64.9 RM. Compound 24 was the most active of this series with an IC50 of 5.6 mu M. A number of these derivatives further exhibited strong inhibition against HCV lb and 2a genotypes in cell based antiviral assays. Molecular docking analysis predicted that the thiazolidinone derivatives bind to the NS5B thumb pocketII (TP-II). Our results suggest that further optimization of the thiazolidinone scaffold may be possible to yield new derivatives with improved enzyme- and cell-based activity. (C) 2013 Elsevier Masson SAS. All rights reserved.Publication Open Access Synthesis, characterization and biological evaluation of 1,3-thiazolidine-4-ones derived from (2S)-2-benzoylamino-3-methylbutanohydrazide hydrazones(MARMARA UNIV, 2021) TATAR, ESRA; Tatar, Esra; Kucukguzel, Ilkay; Otuk, Gulten; Bilgin, Merve; De Clercq, Erik; Andrei, Graciela; Snoeck, Robert; Pannecouque, Christophe; Kaushik-Basu, NeerjaNovel 2-aryl-5-non-substituted / methyl-1,3-thiazolidine-4-one derivatives 14-33 carrying L-valine core were synthesized by the reaction of acylhydrazones 4-13 with thioglycolic acid / thiolactic acid. Structures of all synthesized compounds 14-33 were confirmed by IR, H-1-NMR and HR-MS analysis and C-13-NMR were recorded for selected compounds 17, 21, 28 and 30. None of the compounds 14-33 showed activity against HIV-1 (strain IIIB) or HIV-2 (strain ROD) in an MT-4/MTT based assay. Compounds 14-33 were also screened against Feline Corona Virus (FIPV), Feline Herpes Virus, HSV-1(KOS), HSV-1 (TK-KOS ACVr), HSV-2 (G), Vaccinia virus, Vesicular stomatitis virus, Cytomegalovirus, Varicella-Zoster virus, Respiratory syncytial virus, Coxsackie B4 virus, Parainfluenza-3 virus, Reovirus-1, Sindbis virus and Punta Toro virus, but none of them showed antiviral activity at subtoxic concentrations. Anti-HCV NS5B RdRp activity of some selected compounds from the series 14-33 were found to vary between 4.1-27 % at the concentration of 100 mu M. In vitro antibacterial activity evaluation of selected compounds 16-23 and 25-32, against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 29212, Klebsiella pneumoniae ATCC 4352, Bacillus subtilis ATCC 6633, Staphylococcus epidermidis ATCC 12228, MRSA and antifungal activity against Candida albicans ATCC 10231 resulted in the MIC values between 625->5000 mu g/ml.Publication Open Access