Person: TATAR, ESRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TATAR
First Name
ESRA
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity(2022-11-01) BİNGÖL ÖZAKPINAR, ÖZLEM; KULABAŞ, NECLA; TATAR, ESRA; KÜÇÜKGÜZEL, İLKAY; Bulbul B., Ding K., Zhan C., Ciftci G., YELEKÇİ K., Gurboga M., BİNGÖL ÖZAKPINAR Ö., Aydemir E., Baybag D., ŞAHİN F., et al.Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 mu M, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 mu M. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.Publication Metadata only Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus(WILEY) TATAR, ESRA; Tatar, Esra; Yaldiz, Seda; Kulabas, Necla; Vanderlinden, Evelien; Naesens, Lieve; Kucukguzel, IlkayIn previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 mu M, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.