Person: TATAR, ESRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TATAR
First Name
ESRA
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells(ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2016) ÖZSAVCI, DERYA; Kulabas, Necla; Tatar, Esra; Ozakpinar, Ozlem Bingol; Ozsavci, Derya; Pannecouque, Christophe; De Clercq, Erik; Kucukguzel, IlkayIn this study, a series of thiosemicarbazide derivatives 12-14, 1,2,4-triazol-3-thione derivatives 15-17 and compounds bearing 2-(4H-1,2,4-triazole-3-ylthio)acetamide structure 18-32 have been synthesized starting from phenolic compounds such as 2-naphthol, paracetamol and thymol. Structures and purity of the target compounds were confirmed by the use of their chromatographic and spectral data besides microanalysis. All of the synthesized new compounds 12-32 were evaluated for their anti-HIV activity. Among these compounds, three representatives 18, 19 and 25 were selected and evaluated by the National Cancer Institute (NCI) against the full panel of 60 human cancer cell lines derived from nine different cancer types. Antiproliferative effects of the selected compounds were demonstrated in human tumor cell lines K-562, A549 and PC-3. These compounds inhibited cell growth assessed by MTT assay. Compound 18,19 and 25 exhibited anti-cancer activity with IC50 values of 5.96 mu M (PC-3 cells), 7.90 mu M (A549/ATCC cells) and 7.71 mu M (K-562 cells), respectively. After the cell viability assay, caspase activation and Bcl-2 activity of the selected compounds were measured and the loss of mitochondrial membrane potential (MMP) was detected. Compounds 18, 19 and 25 showed a significant increase in caspase-3 activity in a dose-dependent manner. This was not observed for caspase-8 activity with compound 18 and 25, while compound 19 was significantly elevated only at the dose of 50 mu M. In addition, all three compounds significantly decreased the mitochondrial membrane potential and expression of Bcl-2. (C) 2016 Elsevier Masson SAS. All rights reserved.Publication Metadata only Synthesis and evaluation of novel 1,3,4-thiadiazole-fluoroquinolone hybrids as antibacterial, antituberculosis, and anticancer agents(SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK, 2018) TÜRE, ASLI; Demirci, Asli; Karayel, Kaan Gokce; Tatar, Esra; Oktem Okullu, Sinem; Unubol, Nihan; Tasli, Pakize Neslihan; Kocagoz, Zuhtu Tanil; Sahin, Fikrettin; Kucukguzel, IlkayA series of 5-substituted-1,3,4-thiadiazole-based fluoroquinolone derivatives were designed as potential antibacterial and anticancer agents using a molecular hybridization approach. The target compounds 16-25 were synthesized by reacting the corresponding N-(5-substituted-1,3,4-thiadiazol-2-yl)-2-chloroacetamides with ciprofloxacin or norfloxacin. The purity and identity of the synthesized compounds were determined by the use of chromatographic and spectral techniques (NMR, IR, MS, etc.) besides elemental analysis. Antibacterial, antituberculosis, and anticancer activity of the target compounds were evaluated against selected strains and cancer cell lines. Compound 20 was appreciated as the most active agent representing antibacterial activity against Escherichia coli and Staphylococcus aureus with MIC values of 4 mu g/mL and 2 mu g/mL, respectively. Amongst the synthesized fluoroquinolone derivatives, compounds 19 and 20 were found to have modest antitubercular activity with 8 mu g/mL MIC values for each. Most potent derivative, compound 20 was docked against Staphylococcus aureus and Mycobacterium tuberculosis DNA gyrase enzymes to visualize the possible conformation of the compound. Additionally, anticancer activities of target compounds were evaluated on seven different cancer cell lines.Publication Metadata only Novel 4-Thiazolidinones as Non-Nucleoside Inhibitors of Hepatitis C Virus NS5B RNA-Dependent RNA Polymerase(WILEY-V C H VERLAG GMBH, 2015) TATAR, ESRA; Cakir, Gizem; Kucukguzel, Ilkay; Guhamazumder, Rupa; Tatar, Esra; Manvar, Dinesh; Basu, Amartya; Patel, Bhargav A.; Zia, Javairia; Talele, Tanaji T.; Kaushik-Basu, NeerjaIn continuation of our efforts to develop new derivatives as hepatitis C virus (HCV) NS5B inhibitors, we synthesized novel 5-arylidene-4-thiazolidinones. The novel compounds 29-42, together with their synthetic precursors 22-28, were tested for HCV NS5B inhibitory activity; 12 of these compounds displayed IC50 values between 25.3 and 54.1 mu M. Compound 33, an arylidene derivative, was found to be the most active compound in this series with an IC50 value of 25.3 mu M. Molecular docking studies were performed on the thumb pocket-II of NS5B to postulate the binding mode for these compounds.