Person: YEGEN, BERRAK
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YEGEN
First Name
BERRAK
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Melatonin ameliorates oxidative organ damage induced by acute intra-abdominal compartment syndrome in rats(2003) YEGEN, BERRAK; Sener, Göksel; Kaçmaz, Ayhan; User, Yilmaz; Ozkan, Sirri; Tilki, Metin; Yeğen, Berrak C.Acutely increased intra-abdominal pressure (IAP) can lead to multiple organ failure. As blood flow to intra-abdominal organs is reduced by high venous resistance, ischemia-reperfusion (I/R) injury plays an important role in the pathogenesis of abdominal compartment syndrome (ACS) following IAP. Melatonin, a secretory product of the pineal gland, is known to have free radical scavenging and antioxidative properties in several oxidative processes. The objective of this study was to examine the potential protective properties of melatonin on the oxidative organ damage in a rat model of ACS. Under ketamine anesthesia, an arterial catheter was inserted intraperioneally (i.p.) and using an aneroid manometer connected to the catheter, IAP was kept at 20 mmHg (ischemia group; I) for 1 hr. In the ischemia/reperfusion (I/R) group, pressure applied for an hour was decompressed and a 1-hr reperfusion period was allowed. In another IR group, melatonin was administered (10 mg/kg, i.p.) immediately before the decompression of IAP. The results demonstrate that tissue levels of malondialdehyde (MDA) and myeloperoxidase activity (MPO; index of tissue neutrophil infiltration) were elevated, while glutathione (GSH; a key to antioxidant) levels were reduced in both I and I/R groups (P < 0.05-0.001). Melatonin treatment in I/R rats reversed these changes (P < 0.01-0.001). Moreover, melatonin given to the I/R group reduced the elevations in serum aspartate aminotransferase, alanine aminotransferase and blood urea nitrogen levels and abolished the increase in serum creatinine levels. Our results indicate that melatonin, because of antioxidant and free radical scavenging properties, ameliorates reperfusion-induced oxidative organ damage. In conclusion, the results of the present study suggest that the therapeutic value of melatonin as a 'reperfusion injury-limiting' agent must be considered in ACS.Publication Metadata only Melatonin prevents oxidative kidney damage in a rat model of thermal injury(2002) YEGEN, BERRAK; Sener, Göksel; Sehirli, A. Ozer; Satiroğlu, Handan; Keyer-Uysal, Meral; Yeğen, Berrak C.Animal models of thermal trauma implicate oxygen radicals as causative agents in local wound response and distant organ injury following burn. This study was designed to determine the effect of melatonin treatment on levels of glutathione (GSH), malondialdehyde (MDA), protein oxidation (PO) and myeloperoxidase (MPO) activity in the kidney tissues of rats with thermal injury. Under ether anaesthesia, shaved dorsum of the rats was exposed to 90 degrees C bath for 10 s to induce burn injury. Rats were decapitated either 3 h or 24 h after burn injury. Melatonin was administered i.p. immediately after burn injury. In the 24-h burn group melatonin injections were repeated for two more occasions. In the sham group the same protocol was applied except that the dorsum was dipped in a 25 degrees C water bath for 10 s. Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, and significant increases in MDA and PO levels, and MPO activity at post-burn 3 and 24 hours. Treatment of rats with melatonin (10 mg/kg) significantly elevated the reduced GSH levels while it decreased MDA and PO levels as well as MPO activity.Publication Metadata only Melatonin improves oxidative organ damage in a rat model of thermal injury(2002) YEGEN, BERRAK; Sener, Göksel; Sehirli, A. Ozer; Satiroğlu, Handan; Keyer-Uysal, Meral; Yeğen, Berrak C.Animal models of burn injury indicate oxygen radicals as causative agents in the local wound response, as well as in the development of burn shock and distant organ injury. This study was designed to determine the possible protective effect of melatonin treatment against oxidative damage in the liver, lung and intestine induced by burn injury. Under ether anaesthesia, the shaved dorsum of rats was exposed to a 90 degrees C bath for 10s to induce burn injury. Rats were decapitated either 3 or 24h after burn injury. Melatonin was administered i.p. immediately after burn injury. In the 24h burn group, melatonin injections were repeated for two more occasions. In the sham group the same protocol was applied except that the dorsum was dipped in a 25 degrees C water bath for 10s. Liver, lung and intestine tissues were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and protein oxidation (PO). Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, significant increases in MDA and PO levels, and MPO activity at postburn 3 and 24h. Treatment of rats with melatonin (10mg/kg) significantly elevated the reduced GSH levels while it decreased MDA and PO levels as well as MPO activity.Publication Metadata only Octreotide improves burn-induced intestinal injury in the rat(2003) YEGEN, BERRAK; Sener, Göksel; Sehirli, A. Ozer; Satiroglu, Handan; Kaçmaz, Ayhan; Ayanoglu-Dülger, Gül; Yegen, Berrak C.The local thermal trauma activates a number of systemic mediator cascades, e.g. a complement activation, cytokine production, resulting in a generalized sequestration and a priming of local and systemic neutrophils and macrophages. We aimed to determine the possible protective effect of octreotide (OCT), a synthetic somatostatin analogue, against burn-induced intestinal tissue damage possibly by inhibiting neutrophil infiltration. Under brief ether anaesthesia, shaved dorsum of the rats was exposed to 90 degrees C bath for 10s to induce burn injury. Rats were decapitated either 3, 24 or 72 h after burn injury. Octreotide (10 microg/kg) or saline was administered subcutaneously (s.c.) immediately after the burn injury. In the 24- and 72-h burn groups, OCT injections were repeated three times daily. In the sham group the same protocol was applied except that the dorsum was dipped in a 25 degrees C water bath for 10 s Malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) activity were determined in the intestinal tissue. The results demonstrate that burn injury results in significant neutrophil accumulation, as evidenced by increases in MPO activity. The increase in MDA and the concomitant decrease in GSH levels demonstrate the role of oxidative mechanisms in burn injury. OCT may have some beneficial therapeutic effects by reducing neutrophil-dependent injury and related lipid peroxidation following burn trauma.