Person:
AKSU, MEHMET BURAK

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

AKSU

First Name

MEHMET BURAK

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Patch-Based Technology for Corneal Microbial Keratitis
    (Springer, 2020) AKSU, MEHMET BURAK; Ulag S., Ilhan E., Aksu B., Sengor M., Ekren N., Kilic O., Gunduz O.
    Corneal opacities, which happened mainly due to microbial keratitis, are the fourth cause of blindness worldwide. Antimicrobial therapy is an alternative solution for microbial keratitis caused by Staphylococcus aureus and Pseudomonas Aeruginosa. The aim of this study, to develop patches for the treatment of corneal keratitis which caused significant corneal blindness by using electrospinning method. Polyvinyl-alcohol (PVA) patches with Gelatine (GEL) studied in various ratios. Different amounts of gelatine added to PVA to resemble the collagen fibril structure of the cornea. To enable the patches to the antimicrobial effect against the bacterias, the special plant extract was used. The produced corneal patches were examined separately for chemical, morphological, and antimicrobial properties. Scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) spectroscopy were performed to observe the surface morphology and chemical structure of the patches, respectively. © Springer Nature Switzerland AG 2020.
  • Publication
    A novel approach to treat the Thiel-Behnke corneal dystrophy using 3D printed honeycomb-shaped polymethylmethacrylate (PMMA)/Vancomycin (VAN) scaffolds
    (Elsevier B.V., 2021) ŞAHİN, ALİ; Ulag S., Sahin A., Guncu M.M., Aksu B., Ekren N., Sengor M., Kalaskar D.M., Gunduz O.
    Thiel-Behnke corneal dystrophy, or honeycomb corneal dystrophy, is an autosomal dominant corneal disorder. Tissue engineering can be a novel approach to regenerate this dystrophy. In this study, the honeycomb geometry of the dystrophy mimicked with a 3D printing technology, and 40% PMMA, 40% PMMA/(0.1, 0.5, 2, and 10)% VAN scaffolds were fabricated with honeycomb geometry. As a result of the biocompatibility test with mesenchymal stem cells (MSCs), it can be said that cells on the scaffolds showed high viability and proliferation for all incubation periods. According to the antibacterial activity results, the 40% PMMA/10% VAN showed antibacterial activity against S. aureous. Mechanical results reported that with the addition of VAN into the 40% PMMA, the tensile strength value increased up to 2% VAN amount. The swelling behaviours of the scaffolds were examined in vitro, and found that the swelling rate increased with a high VAN amount. The release of VAN from the scaffolds showed sustained release behaviour, and it took 13 days to be released entirely from the scaffolds. © 2021 Elsevier B.V.