Person: AKSU, MEHMET BURAK
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
AKSU
First Name
MEHMET BURAK
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access A novel approach for the fabrication of 3D-printed dental membrane scaffolds including antimicrobial pomegranate extract.(2023-02-22) AKSU, MEHMET BURAK; Karabulut H., Ulag S., Dalbayrak B., Arisan E. D., Taskin T., Guncu M. M., Aksu B., Valanezhad A., Gunduz O.In this study, a dental membrane scaffold was fabricated using a 3D printing technique, and the antimicrobial effect of pomegranate seed and peel extract were investigated. For the production of the dental membrane scaffold, a combination of polyvinyl alcohol, starch, and pomegranate seed and peel extracts was used. The aim of the scaffold was to cover the damaged area and aid in the healing process. This can be achieved due to the high antimicrobial and antioxidant content of pomegranate seed and peel extracts (PPE: PSE). Moreover, the addition of starch and PPE: PSE improved the biocompatibility of the scaffold, and their biocompatibility was tested using human gingival fibroblast (HGF) cells. The addition of PPE: PSE into the scaffolds resulted in a significant antimicrobial effect on S. aureus and E. faecalis bacteria. Moreover, different concentrations of starch (1%, 2%, 3% w/v) and pomegranate peel and seed extract (3%, 5%, 7%, 9%, and 11% PE v/v) were analyzed to obtain the ideal dental membrane structure. The optimum starch concentration was chosen as 2% w/v due to it giving the scaffold the highest mechanical tensile strength (23.8607 ± 4.0796 MPa). The pore sizes of each scaffold were studied by SEM analysis, and pore sizes were arranged between 155.86 and 280.96 µm without any plugging problems. Pomegranate seed and peel extracts were obtained by applying the standard extraction method. High-performance liquid chromatography was performed using the diode-array detection (HPLC-DAD) technique to analyze the phenolic content of the pomegranate seed and peel extracts. Two phenolic components of the pomegranate seed and peel extracts were investigated in the following amounts: fumaric acid (17.56 µg analyte/mg extract) and quinic acid (18.79 µg analyte/mg extract) in pomegranate seed extract and fumaric acid (26.95 µg analyte/mg extract) and quinic acid (33.79 µg analyte/mg extract) in pomegranate peel extract.Publication Open Access Fabrication of gentamicin sulfate-loaded 3d-printed polyvinyl alcohol/sodium alginate/gelatin-methacryloyl hybrid scaffolds for skin tissue replacement(2023-01-01) ULAĞ, SONGÜL; ŞAHİN, ALİ; AKSU, MEHMET BURAK; GÜNDÜZ, OĞUZHAN; Izgordu M. S., Ayran M., ULAĞ S., Yildirim R., Bulut B., ŞAHİN A., Guncu M. M., AKSU M. B., GÜNDÜZ O.3D-printed scaffolds can better mimic the function of human skin, both biologically and mechanically. Within the scope of this study, the effect of the addition of different amounts (10, 15, 20 mg) of gentamicin sulfate (GS) to a 10 mL solution of natural and synthetic polymers is investigated. Sodium alginate (SA), gelatin-methacryloyl (GelMA), and polyvinyl alcohol (PVA) are chosen as bioactive materials. The surface morphology and pore structures are visualized by scanning electron microscopy (SEM). According to the results, it is observed that the pore sizes of all scaffolds are smaller than 270 µm, the lowest value (130 µm) is obtained in the scaffold loaded with 15 mg GS, and it also has the highest tensile strength value (12.5 ± 7.6 MPa). Similarly, it is observed that the tensile strength (9.7 ± 4.5 MPa) is high in scaffold loaded with 20 mg GS. The biocompatibility test is performed with fibroblast cells, and the results show that the scaffolds are biocompatible with cells. The antibacterial test is carried out against the S.aureous and E. coli and the results indicate that all GS-loaded scaffolds demonstrate antibacterial activity.Publication Open Access 3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity(MDPI, 2020-11-02) AKSU, MEHMET BURAK; Aranci, Kubra; Uzun, Muhammet; Su, Sena; Cesur, Sumeyye; Ulag, Songul; Amin, Al; Guncu, Mehmet Mucahit; Aksu, Burak; Kolayli, Sevgi; Ustundag, Cem Bulent; Silva, Jorge Carvalho; Ficai, Denisa; Ficai, Anton; Gunduz, OguzhanIn this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA-Ps scaffolds are very useful structures for wound dressing applications.