Person:
BAYRAKLI, FATİH

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

BAYRAKLI

First Name

FATİH

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    Toward Precision Oncology in Glioblastoma with a Personalized Cancer Genome Reporting Tool and Genetic Changes Identified by Whole Exome Sequencing
    (2023-09-01) ERDOĞAN, ONUR; ERZİK, CAN; ARĞA, KAZIM YALÇIN; BAYRAKLI, FATİH; ERDOĞAN O., Özkaya Ş. Ç., ERZİK C., Bilguvar K., ARGA K. Y., BAYRAKLI F.
    Precision/personalized medicine in oncology has two key pillars: molecular profiling of the tumors and personalized reporting of the results in ways that are clinically contextualized and triangulated. Moreover, neurosurgery as a field stands to benefit from precision/personalized medicine and new tools for reporting of the molecular findings. In this context, glioblastoma (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Precision/personalized medicine has emerged as a promising approach for personalized therapy in GBM. In this study, we performed whole exome sequencing of tumor tissue samples from six newly diagnosed GBM patients and matched nontumor control samples. We report here the genetic alterations identified in the tumors, including single nucleotide variations, insertions or deletions (indels), and copy number variations, and attendant mutational signatures. Additionally, using a personalized cancer genome-reporting tool, we linked genomic information to potential therapeutic targets and treatment options for each patient. Our findings revealed heterogeneity in genetic alterations and identified targetable pathways, such as the PI3K/AKT/mTOR pathway. This study demonstrates the prospects of precision/personalized medicine in GBM specifically, and neurosurgical oncology more generally, including the potential for genomic profiling coupled with personalized cancer genome reporting. Further research and larger studies are warranted to validate these findings and advance the treatment options and outcomes for patients with GBM.
  • Publication
    MicroRNA-Mediated Drug Repurposing Unveiled Potential Candidate Drugs for Prolactinoma Treatment
    (KARGER) YILMAZ, BETÜL; Aydin, Busra; Arslan, Sema; Bayrakli, Fatih; Karademir, Betul; Arga, Kazim Yalcin
    Introduction: Prolactinomas, also called lactotroph adenomas, are the most encountered type of hormone-secreting pituitary neuroendocrine tumors in the clinic. The preferred first-line therapy is a medical treatment with dopamine agonists (DAs), mainly cabergoline, to reduce serum prolactin levels, tumor volume, and mass effect. However, in some cases, patients have displayed DA resistance with aggressive tumor behavior or are faced with recurrence after drug withdrawal. Also, currently used therapeutics have notorious side effects and impair the life quality of the patients. Methods: Since the amalgamation of clinical and laboratory data besides tumor histopathogenesis and transcriptional regulatory features of the tumor emerges to exhibit essential roles in the behavior and progression of prolactinomas; in this work, we integrated mRNA- and microRNA (miRNA)-level transcriptome data that exploit disease-specific signatures in addition to biological and pharmacological data to elucidate a rational prioritization of pathways and drugs in prolactinoma. Results: We identified 8 drug candidates through drug repurposing based on mRNA-miRNA-level data integration and evaluated their potential through in vitro assays in the MMQ cell line. Seven repurposed drugs including 5-fluorocytosine, nortriptyline, neratinib, puromycin, taxifolin, vorinostat, and zileuton were proposed as potential drug candidates for the treatment of prolactinoma. We further hypothesized possible mechanisms of drug action on MMQ cell viability through analyzing the PI3K/Akt signaling pathway and cell cycle arrest via flow cytometry and Western blotting. Discussion: We presented the transcriptomic landscape of prolactinoma through miRNA and mRNA-level data integration and proposed repurposed drug candidates based on this integration. We validated our findings through testing cell viability, cell cycle phases, and PI3K/Akt protein expressions. Effects of the drugs on cell cycle phases and inhibition of the PI3K/Akt pathway by all drugs gave us promising output for further studies using these drugs in the treatment of prolactinoma. This is the first study that reports miRNA-mediated repurposed drugs for prolactinoma treatment via in vitro experiments.
  • Publication
    Past, present, and future of therapies for pituitary neuroendocrine tumors: need for omics and drug repositioning guidance
    (2022-03-01) ERDOĞAN, ONUR; ARĞA, KAZIM YALÇIN; BOZKURT, SÜHEYLA; BAYRAKLI, FATİH; YILMAZ, BETÜL; TURANLI, BESTE; Aydin B., Yildirim E., ERDOĞAN O., ARĞA K. Y., Yilmaz B., BOZKURT S., BAYRAKLI F., TURANLI B.
    Innovation roadmaps are important, because they encourage the actors in an innovation ecosystem to creatively imagine multiple possible science future(s), while anticipating the prospects and challenges on the innovation trajectory. In this overarching context, this expert review highlights the present unmet need for therapeutic innovations for pituitary neuroendocrine tumors (PitNETs), also known as pituitary adenomas. Although there are many drugs used in practice to treat PitNETs, many of these drugs can have negative side effects and show highly variable outcomes in terms of overall recovery. Building innovation roadmaps for PitNETs\" treatments can allow incorporation of systems biology approaches to bring about insights at multiple levels of cell biology, from genes to proteins to metabolites. Using the systems biology techniques, it will then be possible to offer potential therapeutic strategies for the convergence of preventive approaches and patient-centered disease treatment. Here, we first provide a comprehensive overview of the molecular subtypes of PitNETs and therapeutics for these tumors from the past to the present. We then discuss examples of clinical trials and drug repositioning studies and how multi-omics studies can help in discovery and rational development of new therapeutics for PitNETs. Finally, this expert review offers new public health and personalized medicine approaches on cases that are refractory to conventional treatment or recur despite currently used surgical and/or drug therapy.
  • Publication
    Decoding molecular signatures of pituitary neuroendocrine tumors’ subtypes through systems biomedicine perspective
    (2021-12-21) BAYRAKLI, FATİH; BOZKURT, SÜHEYLA; ARĞA, KAZIM YALÇIN; TURANLI, BESTE; AYDIN B., Yildirim Sirkeci E., ERDOĞAN O., BAYRAKLI F., BOZKURT S., ARĞA K. Y., TURANLI B.