Person: GÜNDÜZ, OĞUZHAN
Loading...
Email Address
Birth Date
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Fabrication of Amphotericin-B-loaded Sodium Alginate Nanoparticles for Biomedical Applications(2022-12-01) ULAĞ, SONGÜL; ŞENGÖR, MUSTAFA; GÜNDÜZ, OĞUZHAN; ULAĞ S., Celik S. E., ŞENGÖR M., GÜNDÜZ O.In this study, amphotericin-B (AMB)-loaded sodium alginate (SA) nanoparticles were fabricated using the electrospraying technique for biomedical applications. AMB is an antifungal agent and is poorly absorbed from the gastrointestinal tract due to its low aqueous solubility. Therefore, it should be given parenterally to treat systemic fungal infections. This study aims to transport it with nanoparticle formulations and observe the nanoparticle release behaviours. Scanning electron microscopy (SEM) images showed that nanoparticles of 0.5% SA fabricated at 37 kV had the most suitable particle diameter (93.36±24.386 nm) for loading 0.5, 1, and 3 ml of AMB. Fourier transform infrared spectroscopy (FTIR) results demonstrated that AMB successfully loaded into 0.5% SA nanoparticles. Drug release behaviours of the AMB-loaded particles indicated that AMB was released with a burst at the beginning, and release behaviour became sustainable after half an hour. The encapsulation efciencies of the diferent amounts of drug were calculated, and the results showed that the highest encapsulation efciency belonged to the 0.5% SA/1 AMB nanoparticles (42±1.23%).Publication Open Access Fabrication and in vitro characterization of polycaprolactone/graphene oxide/collagen nanofibers for myocardial repair(2023-01-01) ULAĞ, SONGÜL; ŞAHİN, ALİ; DUMLUDAĞ, FATİH; GÜNDÜZ, OĞUZHAN; Karapehlivan S. S., Danisik M. N., Akdag Z., Yildiz E. N., Okoro O. V., Nie L., Shavandi A., ULAĞ S., ŞAHİN A., DUMLUDAĞ F., et al.This study is focused on fabricating tissue-engineered electrospun nanofibers that contain polycaprolactone (PCL), graphene oxide (GO), and collagen (COL) to get an alternative treatment for cardiac injuries. GO (1.5 wt%) is used to support the contraction-elongation of cardiomyocytes by improving electrical stimulation. The COL (1, 3, and 5 wt%) is the main component of the myocardial extracellular matrix have led to their frequent use in cardiac tissue engineering (CTE). The scanning electron microscope (SEM) images show the homogeneous and bead-free morphologies of the nanofibers. Adding a high amount (3% and 5%) of COL decreases the tensile strength value of 17% PCL/1.5% GO nanofiber. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay demonstrates that the COL addition increases cell viability compared to that in 17% PCL/1.5% GO nanofibers on the third day. The response of the nanofibers to alternating current (AC) signal is studied between the frequencies 40 and 105 Hz. The direct current (DC) conductivity values of the films are determined to be between 1.10−10 and 6.10−10 S m−1 at 25 °C. The AC conductivity values show frequency-dependent behavior. Among the PCL/GO-based electrospun nanofibers, 17% PCL/1.5% GO/5% COL nanofiber shows greater DC and AC conductivity than 17% PCL/1.5% GO nanofiber.