Person:
BİLĞİÇ ALKAYA, DİLEK

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

BİLĞİÇ ALKAYA

First Name

DİLEK

Name

Search Results

Now showing 1 - 10 of 32
  • Publication
    Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application
    (SPRINGER, 2020) BİLĞİÇ ALKAYA, DİLEK; Cesur, Sumeyye; Oktar, Faik Nuzhet; Ekren, Nazmi; Kilic, Osman; Alkaya, Dilek Bilgic; Seyhan, Serap Ayaz; Ege, Zeynep Ruya; Lin, Chi-Chang; Erdem, Serap; Erdemir, Gokce; Gunduz, Oguzhan
    Bone tissue engineering has begun to draw attention in recent years. The interactive combination of biomaterials and cells is part of bone tissue engineering. Sodium alginate (SA) is a biologically compatible, degradable, non-toxic natural polymer accepted by the human body and is widely used in the field of tissue engineering. Polylactic acid (PLA) is another type of biodegradable thermoplastic polyester derived from renewable sources which are used in bone tissue engineering and biomedical owing to its biocompatibility and biodegradability. Hydroxyapatite (HA) and tricalcium phosphate (TCP) derived from natural sources such as marine species and bovine bone are biocompatible and non-toxic biomaterials which are used to reconstruct many parts of the skeleton. In this study, PLA, SA with different compositions, and nanofibers obtained by adding orange spiny oyster shell powders (Spondylus barbatus) to them by using electrospining technique. Cell culture study, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement, and tensile strength measurement tests were carried out after the production process. Produced nanofibers showed smooth and beadless surface. The average diameters and distributions decreased with the addition of optimum PLA and TCP amount. The tensile strength of nanofibers was enhanced with the additional SA and TCP. The produced nanofibers are compatible with human bone tissue, which are not cytotoxic, and in addition, a high cell efficiency of SaOS-2 cells on the nanofibers was observed with SEM images.
  • Publication
    Fabrication and characterization of pla/sa/ha composite nanofiber by electrospinning for bone tissue engineering applications
    (2018-07-18) CESUR, SÜMEYYE; EKREN, NAZMİ; KILIÇ, OSMAN; OKTAR, FAİK NÜZHET; BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; GÜNDÜZ, OĞUZHAN; Cesur S., Ekren N., Kılıç O., Oktar F. N., Bilğiç Alkaya D., Ayaz Seyhan S., Ege Z. R., Gündüz O.
  • Publication
    Loading of tuberculosis drugs to nanofiber structures, fiber optimization
    (2019-06-28) BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Onurlu H. İ., Bilğiç Alkaya D., Ayaz Seyhan S., Cesur S., Gündüz O.
    uberculosis is a disease caused by a bacillus called mycobacterium tuberculosis which can be seen in other organs, especially in the lungs. Tuberculosis is an infectious, infectious, inflammatory, acute or chronic-trending bacterial infection. Since the treatment is insufficient with a single drug and the bacilli are resistant to this antibiotic, various antituberculosis drugs are used side by side during the treatment. Side-by-side use of the drugs breaks the resistance of the bacteria but creates a lot of side effects for the patient. We aim to reduce the existing side effects by loading the active agents of rifampicin, isoniazid, pyrazinamide and ethambutol, which are used as antituberculosis drugs, to a biodegradable nanofib. Primarily, PCL polymer material was dissolved in DMF: THF (v / v). After preparing PCL solution in 3%, 6%, 9%, 12% and 15% concentrations, optimization studies were performed by using electrospin device at various voltages. The SEM images of the obtained PCL fibers were examined and drug loading was performed at the suitable PCL concentration. In the planned study, FTIR images of the fibers loaded with the drug will be examined and controlled drug oscillations will be provided at the stomach and intestinal pH as an in vitro trial and spectrophotometric measurements will be taken. The release of drugs loaded into nanofibers are slower due to the wide surface area of the nanofibers, which offers a more controlled drug release.
  • Publication
    Natural nanoantioxidant systems: Recent developments and future prospects
    (Serüven Yayınevi, 2023-01-01) BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; BİLĞİÇ ALKAYA D., AYAZ SEYHAN S.
  • Publication
    Preparation and characterization of silver-doped hydroxyapatite from seashell by different methods
    (2018-09-08) AYAZ SEYHAN, SERAP; BİLĞİÇ ALKAYA, DİLEK; CESUR, SÜMEYYE; OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; , Ayaz Seyhan S., Bilğiç Alkaya D., Öztürk B. N., Cesur S., Topsakal A., Oktar F. N., Gündüz O.
  • Publication
    Hydroxyapatıte is bıomaterıals: its chemıcal synthesıs characterızatıon shell of cypaea annulus
    (2018-09-08) BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; CESUR, SÜMEYYE; OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; Bilğiç Alkaya D., Ayaz Seyhan S., Öztürk B. N., Cesur S., Topsakal A., Oktar F. N., Gündüz O.
  • Publication
    Synthesis of medicinal plant based bioactive electrospun nanofibrous mats and their effect on the antioxidant activity
    (2022-06-24) AYAZ SEYHAN, SERAP; GÜNDÜZ, OĞUZHAN; BİLĞİÇ ALKAYA, DİLEK; Demirel A. B., AYAZ SEYHAN S., BİLĞİÇ ALKAYA D., CESUR S., GÜNDÜZ O.
  • Publication
    Preparatıon of hydroxyapatıte biomaterıals for benzoic acid delıvery from scotch bonnets seashell by microwave processing
    (2018-09-08) BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; CESUR, SÜMEYYE; OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; Öztürk B. N., Bilğiç Alkaya D., Ayaz Seyhan S., Cesur S., Topsakal A., Oktar F. N., Gündüz O.
  • Publication
    Inula helenium loaded nanofibers mat for medical application
    (2023-06-28) CESUR, SÜMEYYE; AYAZ SEYHAN, SERAP; BİLĞİÇ ALKAYA, DİLEK; GÜNDÜZ, OĞUZHAN; SULUTAŞ R. B., CESUR S., AYAZ SEYHAN S., BİLĞİÇ ALKAYA D., GÜNDÜZ O.
    Cancer is one of the leading causes of death worldwide. Biomaterials produced with nanotechnological methods for cancer treatment are more effective and complementary than existing treatment strategies. Nanofiber scaffolds are biomaterials that can be used in cancer treatment and can be produced in composites with biocompatible polymers and anti-cancer drugs, plant extracts. The electrospin device used for the production of these materials creates nanofiber networks by providing the electric field between the needle tip and the metal collector, which transmits the polymer solution. PLA is a biodegradable synthetic material preferred in tissue engineering studies and is a biocompatible, high mechanical strength, low cost polymer suitable for use in drug delivery systems. PVP is a polymer with good adhesion, high physiological compatibility, low toxicity and easily soluble in most organic solvents, especially used in the pharmaceutical industry. The extract of the plant Inula helenium, whose main component consists of sesquiterpene lactones, is also used in treatments for cancer. This component, which has various biological activities, has a significant anti-cancer effect. In this study, the polymer ratio used in the production of nanofiber scaffold obtained by adding Inula helenium extract is 75% PLA-chloroform / 25% PVP-ethanol and 1% Tween 80. The surface morphology of the produced fiber material was determined according to the results in the SEM images. The diameters of the fibers were measured and given in the histogram graph. FT-IR for chemical structure between bonds and DSC tests for thermal behavior analysis were applied. Tensile test was performed for mechanical analysis. Swelling-degradation test was performed and drug release kinetic data were calculated by UV spectrophotometer. In addition, its effectiveness on cancerous cells was examined by MTT analysis. In conclusion, Inula helenium extract-loaded nanofibers can reduce the risk of local recurrence of cancer after surgery and can be directly implanted into solid tumor cells for treatment
  • Publication
    Synthesis of medicinal plant based bioactive electrospun nanofibrous mats and their effect on the antioxidant activity
    (2022-06-24) AYAZ SEYHAN, SERAP; BİLĞİÇ ALKAYA, DİLEK; CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Demirel A. B., Ayaz Seyhan S., Bilğiç Alkaya D., Cesur S., Gündüz O.