Person: GÜNDÜZ, OĞUZHAN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
GÜNDÜZ
First Name
OĞUZHAN
Name
63 results
Search Results
Now showing 1 - 10 of 63
Publication Metadata only Keratin loaded pva/silk fibroin electrospun nanofibers for wound dressing applications(2022-11-26) CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Tut T. A., Cesur S., Gündüz O.Publication Metadata only Fabrication and characterization of naringenin-loaded poly(lactic acid) (pla) nanofibrous scaffolds(2022-11-26) BİLĞİÇ ALKAYA, DİLEK; CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Erdağ Z., Yeşil E., Bilğiç Alkaya D., Cesur S., Gündüz O.Publication Open Access Investigation of the properties of encapsulated hydrophilic and hydrophobic drugs in whey protein microparticles(2022-10-01) ULAĞ, SONGÜL; GÜNDÜZ, OĞUZHAN; Irem Deniz K., Ulağ S., Gündüz O.© 2022 Elsevier B.V.In this study, the amoxicillin (AMX) and rifampicin (RIF) were loaded into the whey protein (WP) to form the hydrophilic and hydrophobic drugs loaded whey protein microparticles. Scanning electron microscopy (SEM) images demonstrated that AMX addition increased the particle size, but RIF addition decreased the dimensions of the particles. The Fourier-transformed infrared spectroscopy (FTIR) results showed that both drugs were successfully loaded into the protein. AMX and RIF were ultimately released from the WP microparticles after 1440 min, according to the drug release test. Two drugs exhibited the same behaviour, but in the first hour, AMX had more release than the RIF.Publication Metadata only Fabrication and characterization of pla/sa/ha composite nanofiber by electrospinning for bone tissue engineering applications(2018-07-18) CESUR, SÜMEYYE; EKREN, NAZMİ; KILIÇ, OSMAN; OKTAR, FAİK NÜZHET; BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; GÜNDÜZ, OĞUZHAN; Cesur S., Ekren N., Kılıç O., Oktar F. N., Bilğiç Alkaya D., Ayaz Seyhan S., Ege Z. R., Gündüz O.Publication Metadata only Loading of tuberculosis drugs to nanofiber structures, fiber optimization(2019-06-28) BİLĞİÇ ALKAYA, DİLEK; AYAZ SEYHAN, SERAP; CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Onurlu H. İ., Bilğiç Alkaya D., Ayaz Seyhan S., Cesur S., Gündüz O.uberculosis is a disease caused by a bacillus called mycobacterium tuberculosis which can be seen in other organs, especially in the lungs. Tuberculosis is an infectious, infectious, inflammatory, acute or chronic-trending bacterial infection. Since the treatment is insufficient with a single drug and the bacilli are resistant to this antibiotic, various antituberculosis drugs are used side by side during the treatment. Side-by-side use of the drugs breaks the resistance of the bacteria but creates a lot of side effects for the patient. We aim to reduce the existing side effects by loading the active agents of rifampicin, isoniazid, pyrazinamide and ethambutol, which are used as antituberculosis drugs, to a biodegradable nanofib. Primarily, PCL polymer material was dissolved in DMF: THF (v / v). After preparing PCL solution in 3%, 6%, 9%, 12% and 15% concentrations, optimization studies were performed by using electrospin device at various voltages. The SEM images of the obtained PCL fibers were examined and drug loading was performed at the suitable PCL concentration. In the planned study, FTIR images of the fibers loaded with the drug will be examined and controlled drug oscillations will be provided at the stomach and intestinal pH as an in vitro trial and spectrophotometric measurements will be taken. The release of drugs loaded into nanofibers are slower due to the wide surface area of the nanofibers, which offers a more controlled drug release.Publication Metadata only Fabrication and characterization of electrospun GelMA/PCL/CS nanofiber composites for wound dressing applications(2022-12-01) TINAZ, GÜLGÜN; GÜNDÜZ, OĞUZHAN; Pilavci E., Ayran M., Ulubay D., Kaya E., TINAZ G., Ozakpinar O. B., Sancakli A., GÜNDÜZ O.In the present study, the effect of different ratios of GelMA concentration has been exhibited for wound dressing implementation by the electrospinning method using a new polymer combination of Gelatin methacrylate (GelMA)/Polycaprolactone (PCL)/Chitosan (CS). The nanofiber composites were fabricated due to their biocompatible, biodegradable, improved mechanical strength, low degradation rate, and hydrophilic nature to develop cell-mimicking, cell adhesion, proliferation, and differentiation. Different concentrations of GelMA were added to the PCL/CS solution as 5, 10, and 20 wt%, respectively, in the formic acid/acetic acid (7:3) solution. A photoinitiator was added to the solution for photo-crosslinking of GelMA. The influence of different solution concentrations (5, 10, and 20 wt%) on the structure\"s nanofiber production and fiber morphology was examined. SEM micrographs revealed that varied GelMA concentrations resulted in suitable and stable nanofiber composites. The average diameter of nanofiber composites grows as the GelMA concentration rises. FTIR, DSC, tensile test, degradation, and swelling test were evaluated. The results demonstrated that high mechanical strength, hydrophilic properties, and a slow degradation rate were observed with the presence and increment of GelMA concentration within the nanofiber composites. The antibacterial potential of GelMA/PCL/CS nanofiber composites was evaluated against P. aeruginosa and S. aureus using a disc diffusion assay. In vitro cell culture research was conducted by seeding NIH 3T3 fibroblast cells on nanofiber composites, proving these cells\" high cell proliferation rate, viability, and adhesion. 10 wt% GelMA-based nanofiber composites were found to have great potential for wound dressing applications.Publication Open Access A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing(2022-01-01) EKREN, NAZMİ; GÜNDÜZ, OĞUZHAN; Su S., Bedir T., KALKANDELEN C., Sasmazel H. T. , Basar A. O. , Chen J., EKREN N., GÜNDÜZ O.© 2022, Qatar University and Springer Nature Switzerland AG.Diabetes mellitus is a chronic metabolic disease associated with long-term multisystem complications, among which are non-healing diabetic foot ulcers (DFUs). Electrospinning is a sophisticated technique for the preparation of polymeric nanofibers impregnated with drugs for wound healing, burns, and diabetic ulcers. This study describes the fabrication and characterization of a novel drug-eluting dressing made of core–shell structured hyaluronic acid (HA)–keratin (KR)-polyethylene oxide (PEO) and polycaprolactone (PCL) nanofibers to treat diabetic wounds. The core–shell nanofibers produced by the emulsion electrospinning technique provide loading of metformin hydrochloride (MH), HA, and KR in the core of nanofibers, which in return improves the sustained long term release of the drug and prolongs the bioactivity. Morphological and chemical properties of the fibers were examined by SEM, FTIR, and XRD studies. It was observed that the fibers which contain HA and KR showed thin fiber structure, greater swelling capacity, fast degradation and increased cumulative drug release amount than neat emulsion fibers due to the hydrophilic nature of HA and KR. MH showed a sustained release from all fiber samples over 20 days and followed the first-order and Higuchi model kinetics and Fickian diffusion mechanism according to kinetic analysis results. In vitro cell culture studies showed that the developed mats exhibited enhanced biocompatibility performance with HA and KR incorporation. The results show that HA and KR-based emulsion electrospun fiber mats are potentially useful new nanofiber-based biomaterials in their use as drug carriers to treat diabetic wounds.Publication Metadata only Fabrication, characterization and investigation of antibacterial activity of propolis substituted sodium alginate tissue scaffolds using three-dimensional (3d) printing technology(2021-06-05) UZUN, MUHAMMET; SU TORUN, SENA; ULAĞ, SONGÜL; AKSU, MEHMET BURAK; GÜNDÜZ, OĞUZHAN; CESUR, SÜMEYYE; Aarancı K., Uzun M., Su Torun S., Cesur S., Ulağ S., Amin A., Güncü M. M., Aksu M. B., Kolaylı S., Silva J., et al.Publication Metadata only Development of Electrospun Nanofibers Containing Gentamicin and Cinnamaldehyde for Treating Corneal Infections(2023-06-30) CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Tut T. A., Cesur S., Ilhan E., Gawrońska E. K., Gündüz O.Publication Metadata only Preparation and characterization of silver-doped hydroxyapatite from seashell by different methods(2018-09-08) AYAZ SEYHAN, SERAP; BİLĞİÇ ALKAYA, DİLEK; CESUR, SÜMEYYE; OKTAR, FAİK NÜZHET; GÜNDÜZ, OĞUZHAN; , Ayaz Seyhan S., Bilğiç Alkaya D., Öztürk B. N., Cesur S., Topsakal A., Oktar F. N., Gündüz O.