Publication:
Assessment of combustion and exhaust emissions in a common-rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio

dc.contributor.authorYILMAZ, İLKER TURGUT
dc.contributor.authorsSanli, Ali; Yilmaz, Ilker Turgut; Gumus, Metin
dc.date.accessioned2022-03-12T22:40:28Z
dc.date.available2022-03-12T22:40:28Z
dc.date.issued2020
dc.description.abstractThis study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1-32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.ijhydene.2019.11.222
dc.identifier.eissn1879-3487
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11424/235964
dc.identifier.wosWOS:000513294900070
dc.language.isoeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofINTERNATIONAL JOURNAL OF HYDROGEN ENERGY
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMethane
dc.subjectHydrogen
dc.subjectCommon rail
dc.subjectCompression ratio
dc.subjectCombustion
dc.subjectEmission
dc.subjectDUAL-FUEL
dc.subjectNATURAL-GAS
dc.subjectIGNITION ENGINE
dc.subjectPILOT INJECTION
dc.subjectPERFORMANCE
dc.subjectBIODIESEL
dc.subjectCNG
dc.subjectAIR
dc.subjectCOCOMBUSTION
dc.subjectIMPROVEMENT
dc.titleAssessment of combustion and exhaust emissions in a common-rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio
dc.typearticle
dspace.entity.typePublication
local.avesis.id6710233b-ba02-4f0d-9fb5-e2570ffdf1ac
local.import.packageSS17
local.indexed.atWOS
local.indexed.atSCOPUS
local.journal.numberofpages21
local.journal.quartileQ2
oaire.citation.endPage3283
oaire.citation.issue4
oaire.citation.startPage3263
oaire.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY
oaire.citation.volume45
relation.isAuthorOfPublicationa0816d81-3ddd-4a76-9c8c-eb8be84ce22d
relation.isAuthorOfPublication.latestForDiscoverya0816d81-3ddd-4a76-9c8c-eb8be84ce22d

Files

Collections