Publication:
Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies

dc.contributor.authorYILMAZ, HİLAL
dc.contributor.authorGÜNDÜZ, OĞUZHAN
dc.contributor.authorsYILMAZ H., Bedir T., Gursoy S., Kaya E., ŞENEL İ., Tinaz G. B., GÜNDÜZ O., ÜSTÜNDAĞ C. B.
dc.date.accessioned2024-08-08T13:19:00Z
dc.date.available2024-08-08T13:19:00Z
dc.date.issued2024-07-01
dc.description.abstractAlthough different fabrication methods and biomaterials are used in scaffold development, hydrogels and electrospun materials that provide the closest environment to the extracellular matrix have recently attracted considerable interest in tissue engineering applications. However, some of the limitations encountered in the application of these methods alone in scaffold fabrication have increased the tendency to use these methods together. In this study, a bilayer scaffold was developed using 3D-printed gelatin methacryloyl (GelMA) hydrogel containing ciprofloxacin (CIP) and electrospun polycaprolactone (PCL)-collagen (COL) patches. The bilayer scaffolds were characterized in terms of chemical, morphological, mechanical, swelling, and degradation properties; drug release, antibacterial properties, and cytocompatibility of the scaffolds were also studied. In conclusion, bilayer GelMA-CIP/PCL-COL scaffolds, which exhibit sufficient porosity, mechanical strength, and antibacterial properties and also support cell growth, are promising potential substitutes in tissue engineering applications.
dc.identifier.citationYILMAZ H., Bedir T., Gursoy S., Kaya E., ŞENEL İ., Tinaz G. B., GÜNDÜZ O., ÜSTÜNDAĞ C. B., "Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies", Biomedical Materials (Bristol), cilt.19, sa.4, 2024
dc.identifier.doi10.1088/1748-605x/ad5483
dc.identifier.issn1748-6041
dc.identifier.issue4
dc.identifier.urihttps://avesis.marmara.edu.tr/api/publication/4fc63389-536a-41fe-a86c-07cddcb3ce43/file
dc.identifier.urihttps://hdl.handle.net/11424/297500
dc.identifier.volume19
dc.language.isoeng
dc.relation.ispartofBiomedical Materials (Bristol)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBiyomedikal Mühendisliği
dc.subjectMühendislik ve Teknoloji
dc.subjectBiomedical Engineering
dc.subjectEngineering and Technology
dc.subjectMühendislik, Bilişim ve Teknoloji (ENG)
dc.subjectMühendislik
dc.subjectMalzeme Bilimi
dc.subjectMALZEME BİLİMİ, BİYOMATERYAL
dc.subjectMÜHENDİSLİK, BİYOMEDİKAL
dc.subjectEngineering, Computing & Technology (ENG)
dc.subjectENGINEERING
dc.subjectMATERIALS SCIENCE
dc.subjectMATERIALS SCIENCE, BIOMATERIALS
dc.subjectENGINEERING, BIOMEDICAL
dc.subjectBiyomühendislik
dc.subjectFizik Bilimleri
dc.subjectBiyomalzemeler
dc.subjectBiyomedikal mühendisliği
dc.subjectBioengineering
dc.subjectPhysical Sciences
dc.subjectBiomaterials
dc.subjectbilayer scaffold
dc.subjectciprofloxacin
dc.subjectcollagen
dc.subjectgelatin methacryloyl
dc.subjectpolycaprolactone
dc.subjecttissue engineering
dc.titleDevelopment of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies
dc.typearticle
dspace.entity.typePublication
local.avesis.id4fc63389-536a-41fe-a86c-07cddcb3ce43
local.indexed.atPUBMED
local.indexed.atSCOPUS
relation.isAuthorOfPublicationa65e244b-4818-403b-85c1-9347b1c36024
relation.isAuthorOfPublication68c12e35-8bb7-4843-ab60-8b8339546e5f
relation.isAuthorOfPublication.latestForDiscoverya65e244b-4818-403b-85c1-9347b1c36024

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
file.pdf
Size:
2.65 MB
Format:
Adobe Portable Document Format

Collections