Publication:
Fault diagnosis on material handling system using feature selection and data mining techniques

dc.contributor.authorYILDIZ, KAZIM
dc.contributor.authorsDemetgul, M.; Yildiz, K.; Taskin, S.; Tansel, I. N.; Yazicioglu, O.
dc.date.accessioned2022-03-13T12:46:37Z
dc.date.available2022-03-13T12:46:37Z
dc.date.issued2014
dc.description.abstractThe material handling systems are one of the key components of the most modern manufacturing systems. The sensory signals of material handling systems are nonlinear and have unique characteristics. It is very difficult to encode and classify these signals by using multipurpose methods. In this study, performances of multiple generic methods were studied for the diagnostic of the pneumatic systems of the material handling systems. Diffusion Map (DM), Local Linear Embedding (LLE) and AutoEncoder (AE) algorithms were used for future extraction. Encoded signals were classified by using the Gustafson-Kessel (GK) and k-medoids algorithms. The accuracy of the estimations was better than 90% when the LLE was used with GK algorithm. (C) 2014 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.measurement.2014.04.037
dc.identifier.eissn1873-412X
dc.identifier.issn0263-2241
dc.identifier.urihttps://hdl.handle.net/11424/237952
dc.identifier.wosWOS:000339814500002
dc.language.isoeng
dc.publisherELSEVIER SCI LTD
dc.relation.ispartofMEASUREMENT
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectServo-pneumatic
dc.subjectMaterial handling system
dc.subjectFault diagnosis
dc.subjectFeature selection
dc.subjectData mining
dc.subjectDimension reduction
dc.subjectGustafson-Kessel
dc.subjectk-Medoids
dc.subjectDIFFUSION MAPS
dc.subjectDIMENSIONALITY REDUCTION
dc.subjectNEURAL-NETWORK
dc.subjectALGORITHM
dc.subjectACTUATOR
dc.subjectMODELS
dc.subjectPLANT
dc.titleFault diagnosis on material handling system using feature selection and data mining techniques
dc.typearticle
dspace.entity.typePublication
local.avesis.idabc1b0a7-5161-4a54-8b47-751f10e01e39
local.import.packageSS17
local.indexed.atWOS
local.indexed.atSCOPUS
local.journal.numberofpages10
oaire.citation.endPage24
oaire.citation.startPage15
oaire.citation.titleMEASUREMENT
oaire.citation.volume55
relation.isAuthorOfPublication5f9350a3-17ea-4eb8-a7ab-8fe4644d3a2c
relation.isAuthorOfPublication.latestForDiscovery5f9350a3-17ea-4eb8-a7ab-8fe4644d3a2c

Files

Collections