Person:
AYDEMİR, CEM

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

AYDEMİR

First Name

CEM

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Sustainability in the print and packaging industry
    (2023-07-01) TUTAK, DOĞAN; AYDEMİR, CEM; YENİDOĞAN, SEMİHA; Tutak D., Aydemir C., Yenidoğan S.
    In the printing and packaging industry, sustainability is defined as manufacture and practices that reflect responsibility for the environment and resources to meet the needs and expectations of future generations. In this article, raw material management, cellulose resources, industrial forests, ecological and renewable alternative fiber resources were examined in the framework of the sustainability of the printing and packaging industry. The recycling of printed materials and packaging and the effects of paper-ink types and product design in this recycling have been discussed. The effect of separation and processing at the source on the efficiency of paper recycling, economy and ecology was emphasized. The greenhouse gas emissions of solvents used in inks and cleaners, the impact on climate change, water footprint and carbon footprint issues were examined. Suggestions have been made on environmental sustainability in the printing industry, what needs to be done for a competitive production, successful optimization, minimization of waste, use of existing possibilities, recycling and evaluation of alternatives and use of clean energy.
  • PublicationOpen Access
    Starch-based nanoparticles as a replacement for synthetic latex: A comprehensive assessment of printability and colorimetric characteristics
    (2024-01-01) AYDEMİR, CEM; Altay B. N., Carver-Kubik A., Williams S., Huq A., Sugiyama M., Dhote Y., Zunjarrao A., AYDEMİR C., Karademir A.
    The papermaking, packaging, and printing industry are actively seeking sustainable material alternatives to address growing concerns about environmental consciousness and finite resources. Synthetic latex, a frequently utilized binder in paper coating formulations, present difficulties due to their dependence on fossil fuel resources and their reduced recyclability in comparison to eco-friendly sustainable products. In this study, synthetic latex was replaced with a starch-based nanoparticle (starch NP) binder at a 1:1 ratio in a coating formulation. Printing trials to assess colorimetric characteristics was made using electrophotography (EP) printing, given the current upward trajectory and expansion of EP technology into the label, packaging, and folding carton sectors. The in-depth investigations reveal that incorporating starch NP binder result in improved optical, color, and dot characteristics. Moreover, it maintains consistent and comparable coefficients of friction. Partial replacement of synthetic latex with the starch NP binder yields significant enhancements in surface roughness and text quality. Importantly, the starch NP binder not only improves the dielectric relaxation properties of the paper and enhances toner transfer but also accelerates the distribution of the electrical field compared to synthetic latex, optimizing toner transfer and thereby enhancing color gamut volume. The study demonstrates that employing the starch NP binder leads to substantial improvements in colorimetric performance without any drawbacks in EP printing, making it highly advantageous to replace 50% of the synthetic binder.