Person:
AYDEMİR, CEM

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

AYDEMİR

First Name

CEM

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    Effects of color mixing components on offset ink and printing process
    (TAYLOR & FRANCIS INC, 2017) AYDEMİR, CEM; Aydemir, Cem; Yenidogan, Semiha; Karademir, Arif; Arman, Emine
    In printing, the most important element is to obtain the correct substrate and ink combination. Transparent white and opaque white are used for the lightening of printing inks, but they are also an important component for the mixing of inks. The primary objective of this study was to assess the result of using transparent and opaque white in mineral oil-based offset printing inks on the rheological and printability properties of these inks as well as the ideal mixing ratios in terms of print quality. Transparent and opaque white were added into the standard offset magenta ink variable ratios. Differences in ink viscosity, tack, and flow (rheological) values affect such parameters as adhesion, transferability, and printing stability in these inks. Prints were made on matt-coated papers of the same grammage with these inks, and contact angle, solid ink density, color strength, and print gloss values of these ink films were measured. Color differences (Delta E*(ab)) of inks in comparison to the standard ink were calculated and the effects of transparent and opaque white on the rheological and printability properties of the ink were presented. Finally, the ideal mixture ratios of transparent and opaque white into the ink were determined in terms of print quality and recommendations were presented.
  • Publication
    The use of natural (Pinus pinaster) resin in the production of printing ink and the printability effect
    (WILEY, 2020) AYDEMİR, CEM; Karademir, Arif; Aydemir, Cem; Yenidogan, Semiha; Arman Kandirmaz, Emine; Kiter, Rukiye G.
    Alkyd resins are generally used in the production of printing inks. All industries look for alternative raw materials in the production of ink with the growing inclination toward using natural products. Resins forming the vehicle of the ink to be obtained from natural resources will provide benefits for the environment, nature, and living creatures. The aim of the study was to promote the use of natural resin in the ink system. NaturalPinus pinasterresin was added into vegetable and mineral oil-based solvents in pure form with alkyd resin in different amounts and ink varnishes of different combinations were prepared. Then, printing inks were produced from these varnishes in pure and hybrid form. Following the assessment of the rheological properties of the inks prepared, printing tests were conducted to assess the printing quality parameters. Ideal mixing ratios of the natural resins in the ink were determined for printability. The environmental importance and advantages of the use of natural resins were discussed. Recommendations were given in line with the results to encourage widespread use of natural resins in near future.
  • Publication
    Evaluation of Sound Absorption, Printability, and Some Mechanical Properties of Thin Recycled Cellulosic Sheets Containing Wool, Ceramic Fiber, and Cotton Dust
    (TAYLOR & FRANCIS AS, 2012) AYDEMİR, CEM; Karademir, Arif; Yenidogan, Semiha; Aydemir, Cem; Kucuk, Haluk
    A number of thin biocomposites were produced from waste corrugated board pulp with 15% and 30% blending of wool fibers (WF), ceramic fibers (CF), and cotton dust (CD), respectively. The highest sound absorption value was obtained from samples containing 30% wool fibers. Printability of control sheets unfortunately was remarkably damaged. Ceramic fibers improved the thermal stability of control sheets, which was followed by WF and CD. Tensile and burst indexes of samples, however, were greatly reduced. It was furthermore found that CD, CF, and WF additions increased the air permeability values of resultant papers parallel to great reduction on densities.
  • PublicationOpen Access
    The examination of vegetable- and mineral oil-based inks' effects on print quality: Green printing effects with different oils
    (SAGE PUBLICATIONS LTD, 2018-07) AYDEMİR, CEM; Aydemir, Cem; Yenidogan, Semiha; Karademir, Arif; Kandirmaz, Emine Arman
    Introduction: Printing inks oil selection is related to the desired nature of the varnish in the ink production. Petroleumderived mineral oils and vegetable oils can be used in offset inks. Methods: In this study, the behaviors of vegetable- and mineral oil-based inks on uncoated and coated paper surfaces were investigated in terms of printability. Solid tone test prints were done with offset printing of these inks. Print gloss of the printed samples was measured and a light fastness test was implemented on these samples in order to determine the resistance to fading. Absorption behavior and contact angles of the ink-printed films on the test papers were measured with the sessile water drop method depending on time, and surface energies were calculated. Results: On both paper types, linseed-soybean oil-based vegetable ink gave the highest brightness value. The lowest print gloss results on the paper were obtained from soybean oil-based inks. The lowest color change was recorded with mineral oil-based inks on gloss-coated papers. According to the ink-film-surface relation, when the contact angle is high, surface energy decreases and the absorbency of the ink-film is lower. Conclusions: In this study, the behaviors of vegetable- and mineral oil-based inks on different paper surfaces, and the effect on the quality of printability as well as differences, have been evaluated, taking environmental and health factors into consideration.
  • Publication
    Surface analysis of polymer films for wettability and ink adhesion
    (WILEY, 2021) AYDEMİR, CEM; Aydemir, Cem; Altay, Bilge Nazli; Akyol, Merve
    The interaction between inks and substrates is critical during printing. Adhesion of the ink film is determined by the reciprocal interactions of polar and nonpolar (dispersive) components between polymer films and inks. The greater the similarity between the polar and dispersive components of inks, coating and substrates, the better the wetting and adhesion on the surface of printing substrate. Various liquid materials in printing such as inks, varnishes, lacquers, and adhesives contain high ratios of water. The highly polar nature of water makes the interaction of these materials unsuitable with predominantly disperse polymer surfaces. Some films with polyolefin structure, especially polypropylene, and polyethylene, are nonpolar and cannot form strong bonds with ink, varnish, or lacquer coatings due to their chemical structure. Increasing surface energy components overcomes the poor wetting and adhesion on polymer surfaces. In this review, the topics of water contact angle measurement and determination of surface energy, surface tension, and using sessile drop method for the wettability and ink adhesion of polymer films are surveyed. Information on structural and chemical processes was given that assists in obtaining wettable film surfaces. Recommendations were made for good adhesion and printability based on surface treatment methods and ink modification.