Person:
ŞENER, GÖKSEL

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ŞENER

First Name

GÖKSEL

Name

Search Results

Now showing 1 - 10 of 34
  • Publication
    Ginkgo biloba extract protects against mercury(II)-induced oxidative tissue damage in rats
    (PERGAMON-ELSEVIER SCIENCE LTD, 2007) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, Goksel; Sehirli, Ozer; Tozan, Ayfer; Velioglu-Ovunc, Ayliz; Gedik, Nursal; Omurtag, Gulden Z.
    Mercury(II) is a highly toxic metal which induces oxidative stress in the body. In this study we aimed to investigate the possible protective effect of Ginkgo biloba (EGb), an antioxidant agent, against experimental mercury toxicity in rat model. Following a single dose of 5 mg/kg mercuric chloride (HgCl2; Hg group) either saline or EGb (150 mg/kg) was administered for 5 days. After decapitation of the rats trunk blood was obtained and the tissue samples from the brain, lung, liver, and kidney were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents. Formation of reactive oxygen species in the tissue samples was monitored by chemiluminescence (CL) technique. BUN, creatinin, ALT, and AST levels and tumor necrosis factor-alpha (TNF-alpha) and lactate dehydrogenase (LDH) activity were assayed in serum samples. The results revealed that HgCl2 induced oxidative damage Caused significant decrease in GSH level, significant increase in MDA level, MPO activity and collagen content of the tissues. Treatment of rats with EGb significantly increased the GSH level and decreased the MDA level, MPO activity, and collagen contents. Similarly, serum ALT, AST and BUN levels, as well as LDH and TNF-alpha, were elevated in the Hg group as compared to control group. On the other hand, EGb treatment reversed all these biochemical indices. Our results implicate that mercury-induced oxidative damage in brain, lung, liver, and kidney tissues protected by G. biloba extract, with its antioxidant effects. (c) 2006 Published by Elsevier Ltd.
  • Publication
    Mesna (2-mercaptoethane sulfonate) prevents ischemia/reperfusion induced renal oxidative damage in rats
    (PERGAMON-ELSEVIER SCIENCE LTD, 2004) ŞENER, GÖKSEL; Kabasakal, L; Sehirli, AO; Cetinel, S; Cikler, E; Gedik, N; Sener, G
    Reoxygenation of the ischemic tissue promotes the generation of various reactive oxygen metabolites (ROM) which are known to have deleterious effects on various cellular functions. This study was designed to determine the possible protective effect of mesna (2-Mercaptoethane Sulfonate) on renal ischemia/reperfusion (I/R) injury. Wistar albino rats were unilaterally nephrectomized, and 15 days later they were subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Mesna (MESNA, 150 mg/kg, i.p.; an effective dose against I/R injury) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were killed by decapitation. Kidney samples were taken for histological examination or determination of the free radicals, renal malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Renal tissue collagen content, as a fibrosis marker was also determined. Creatinine and urea concentrations in blood were measured for the evaluation of renal function. The results demonstrated that renal I/R caused nephrotoxicity, as evidenced by increases in blood urea and creatinine levels, which was reversed by MESNA treatment. Increased free radical levels, as assessed by nitroblue-tetrazolium test were reduced with MESNA. Moreover, the decrease in GSH and increases in MDA levels, and MPO activity induced by I/R indicated that renal injury involves free radical formation. Treatment of rats with MESNA restored the reduced GSH levels while it decreased MDA levels as well as MPO activity. Increased collagen contents of the kidney tissues by I/R were reversed back to the control levels by MESNA treatment. Since MESNA administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that MESNA protects kidney tissue against I/R induced oxidative damage. (C) 2004 Elsevier Inc. All rights reserved.
  • Publication
    Acetaminophen-induced toxicity is prevented by beta-D-glucan treatment in mice
    (ELSEVIER SCIENCE BV, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Toklu, Hale Z.; Sehirli, A. Ozer; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Sener, Goksel
    The protective effect of beta-glucan against oxidative injury caused by acetaminophen was studied in mice liver. BALB-c mice (25-30 g) were pretreated with beta-D-glucan (50 mg/kg, p.o.) for 10 days and on the 11th day they received an overdose of acetaminophen (900 mg/kg, i.p.). Four hours after the acetaminophen injection, mice were decapitated and their blood was taken to determine serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-alpha) levels. Tissue samples of the liver were taken for histological examination or for the determination of levels of malondialdehyde, an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase activity, an index of tissue neutrophil infiltration. The formation of reactive oxygen species in hepatic tissue samples was monitored by using the chemilummescence technique with luminol and lucigenin probes. Acetaminophen caused a significant decrease in the GSH level of the tissue, which was accompanied with significant increases in the hepatic luminol and lucigenin chemiluminescence values, malondialdehyde level, MPO activity and collagen content. Similarly, serum ALT, AST levels, as well as LDH and TNF-alpha, were elevated in the acetaminophen-treated group when compared with the control group. On the other hand, P-D-glucan treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by acetaminophen. In conclusion, these results suggest that beta-D-glucan exerts cytoprotective effects against oxidative injury through its antioxidant properties and may be of therapeutic use in preventing acetaminophen toxicity. (c) 2006 Elsevier B.V. All rights reserved.
  • Publication
    Protective effect of taurine against alendronate-induced gastric damage in rats
    (WILEY, 2005) ŞENER, GÖKSEL; Sener, G; Sehirli, O; Cetinel, S; Midillioglu, S; Gedik, N; Ayanoglu-Dulger, G
    Alendronate (ALD) causes serious gastrointestinal adverse effects. The aim of this study was to investigate whether taurine (TAU), a semi-essential amino acid and an antioxidant, improves the alendronate-induced gastric injury. Rats were administered 20 mg/kg ALD by gavage for 4 days, either alone or following treatment with TAU (50 mg/kg, i.p.). On the last day of treatment, following drug administration, pylorus ligation was performed and 2 h later, rats were killed and stomachs were removed. Gastric acidity and tissue ulcer index values, lipid peroxidation and glutathione (GSH) levels, myeloperoxidase (MPO) activity as well as the histologic appearance of the stomach tissues were determined. Chronic oral administration of ALD induced significant gastric damage, increasing lipid peroxidation, MPO activity and collagen content, as well as decreasing tissue GSH levels. Treatment with TAU prevented the damage and also the changes in biochemical parameters. Findings of the present study suggest that ALD induces oxidative gastric damage by a local irritant effect, and that TAU ameliorates this damage by its antioxidant and/or membrane-stabilizing effects.
  • Publication
    Protective effect of melatonin and omeprazole against alendronat-induced gastric damage
    (SPRINGER, 2005) ŞENER, GÖKSEL; Sener, G; Goren, FO; Ulusoy, NB; Ersoy, Y; Arbak, S; Dulger, GA
    Alendronate causes serious gastrointestinal adverse effects. We aimed to investigate if free radicals have any role in the damage induced by alendronate and if melatonin or omeprazole is protective against this damage. Rats were administered 20 mg/kg alendronate by gavage for 4 days, either alone or following treatment with melatonin or omeprazole. On the last day, following drug administration, pilor ligation was performed, and 2 hr later rats were killed and stomachs were removed. Gastric acidity and tissue ulcer index values, lipid peroxidation, and myeloperoxidase and glutathione levels, as well as the histologic appearance of the stomach tissues, were determined. Chronic oral administration of alendronate induced significant gastric damage, increasing lipid peroxidation and myeloperoxidase activity, while tissue glutathione levels decreased. Treatment with omeprazole or melatonin prevented this damage as well as the changes in biochemical parameters, and melatonin appeared to be more efficient than omeprazole in protecting the mucosa. Intraperitoneal administration of alendronate did not cause much gastric irritation. Findings of the present study suggest that alendronate induces oxidative gastric damage by a local irritant effect and that melatonin and omeprazole are protective against this damage due to their antioxidant properties.
  • Publication
    Octreotide ameliorates alendronate-induced gastric injury
    (ELSEVIER SCIENCE INC, 2004) ŞENER, GÖKSEL; Sener, G; Paskaloglu, K; Kapucu, C; Cetinel, S; Contuk, G; Ayanoglu-Dulger, G
    Alendronate causes serious gastrointestinal adverse effects. The aim of this study was to investigate whether octreotide, a synthetic somatostatin analogue, improves the alendronate-induced gastric injury. Rats were administered 20 mg/kg alendronate by gavage for 4 days, either alone or following treatment with octreotide (0.1 ng/kg, i.p.). On, the last day, following drug administration, pilor ligation was performed and 2 h later,rats were killed and stomachs were removed. Gastric acidity and tissue ulcer index values, lipid peroxidation (as assessed by malondialdehyde, MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity as well as the histologic appearance of the stomach tissues were determined. Chronic oral administration of alendronate induced significant gastric damage, increasing lipid peroxidation (37.1 +/- 3.2 nmol/g) and myeloperoxidase activity (57.6 +/- 3.7 U/g), while tissue glutathione levels (0.9 +/- 0.1 mumol/g) decreased. Treatment with octreotide prevented this damage as well as the changes in biochemical parameters (MDA: 23.4 +/- 1.3 nmol/g; MPO: 31.68 U/g; GSH: 1.5 +/- 0.1 mumol/g). Findings of the present study suggest that alendronate induces oxidative gastric damage by a local irritant effect, and that octreotide ameliorates this damage by inhibiting neutrophil infiltration and reducing lipid peroxidation. Therefore, its therapeutic role as a ulcer healing agent must be further elucidated in alendronate-induced gastric mucosal injury. (C) 2004 Elsevier Inc. All rights reserved.
  • Publication
    Melatonin protects against oxidative organ injury in a rat model of sepsis
    (SPRINGER, 2005) YEGEN, BERRAK; Sener, G; Toklu, H; Kapucu, C; Ercan, F; Erkanli, G; Kacmaz, A; Tilki, M; Yegen, BC
    Purpose. Based on the potent antioxidant effects of melatonin, we investigated the putative protective role of melatonin against sepsis-induced oxidative organ damage in rats. Methods. Sepsis was induced by cecal ligation and puncture (CLP) in Wistar albino rats. Animals subjected to CLP and sham-operated control rats were given saline or melatonin 10 mg/kg intraperitoneally 30 min before and 6 h after the operation. The rats were killed 16 h after the operation and the biochemical changes were investigated in the liver, kidney, heart, lung, diaphragm, and brain tissues by examining malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. We also examined the tissues microscopically. Results. Sepsis resulted in a significant decrease in GSH levels and a significant increase in MDA levels and MPO activity (P < 0.05-P < 0.001) showing oxidative damage, which was confirmed by histological examination. Melatonin clearly reversed these oxidant responses and the microscopic damage, demonstrating its protective effects against sepsis-induced oxidative organ injury. Conclusion. The increase in MDA levels and MPO activity and the concomitant decrease in GSH levels demonstrate the role of oxidative mechanisms in sepsis-induced tissue damage. Melatonin, by its free radical scavenging and antioxidant properties, ameliorated oxidative organ injury. Thus, supplementing antiseptic shock treatment with melatonin may be beneficial in the clinical setting.
  • Publication
    Protective effect of aqueous garlic extract against renal ischemia/reperfusion injury in rats
    (MARY ANN LIEBERT, INC, 2005) ŞENER, GÖKSEL; Kabasakal, L; Sehirli, O; Cetinel, S; Cikler, E; Gedik, N; Sener, G
    Oxygen free radicals are important components involved in pathophysiological tissue alteration observed during ischemia/reperfusion (I/R). This study was designed to determine the possible protective effect of aqueous garlic extract (AGE) on renal I/R injury. Wistar albino rats were unilaterally nephrectomized and subjected to 45 minutes of renal pedicle occlusion followed by 6 hours of reperfusion. AGE (I mL/kg, i.p., corresponding to 500 mg/kg) or vehicle was administered twice: 15 minutes prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were killed by decapitation. Kidney samples were taken for histological examination or determination of levels of free radicals; renal malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Renal tissue collagen content, as a fibrosis marker, was also determined. Creatinme and urea concentrations in blood were measured for the evaluation of renal function. The results revealed that I/R-induced nephrotoxicity, as evidenced by increases in blood urea and creatinine levels, was reversed by AGE treatment. The levels of free radicals, as assessed by the nitro blue tetrazolium test, were increased. Moreover, the decrease in GSH levels and the increases in MDA levels and MPO activity induced by I/R indicated that renal injury involves free radical formation. Treatment of rats with AGE (1 mL/kg) restored the reduced GSH levels, while it decreased free levels of radicals and MDA as well as MPO activity. Collagen contents of the kidney tissues increased by I/R were reversed back to the control levels with AGE. Since AGE administration reversed these oxidant responses and improved renal function and damage at the microscopic level, it seems likely that AGE protects kidney tissue against I/R-induced oxidative damage.
  • Publication
    Protective effect of beta-glucan against oxidative organ injury in a rat model of sepsis
    (ELSEVIER, 2005) ERCAN, FERİHA; Sener, G; Toklu, H; Ercan, F; Erkanli, G
    Sepsis leads to various organ damage and dysfunction. One of the underlying mechanisms is thought to be the oxidative damage due to the generation of free radicals. In this study, we investigated the putative protective role of beta-gluican against sepsis-induced oxidative organ damage. Sepsis was induced by caecal ligation and puncture (CLP) in Wistar albino rats. Sham operated (control) and sepsis groups received saline or beta-glucan (50 mg/kg, po) once daily for 10 days and 30 min prior to and 6 h after the CLP. Sixteen hours after the surgery, rats were decapitated and the biochemical changes were determined in the brain, diaphragm, kidney, heart, liver and lung tissues using malondialdehyde (N4DA) content - an index of lipid peroxidation - glutathione (GSH) levels - a key antioxidant - and myeloperoxidase (MPO) activity - an index of neutrophil infiltration. Serum TNF-alpha levels were assessed by RIA method. Tissues were also examined under light microscope to evaluate the degree of sepsis-induced damage. The results demonstrate that sepsis significantly decreased GSH levels and increased the MDA levels and MPO activity (p < 0.05-p < 0.001) causing oxidative damage. Elevated plasma TNF-alpha levels in septic rats significantly reduced to control levels in beta-glucan treated rats. Since -glucan administration reversed these oxidant responses, it seems likely that beta-glucan protects against sepsis-induced oxidative organ injury. (c) 2005 Elsevier B.V. All rights reserved.
  • Publication
    Oxytocin alleviates oxidative renal injury in pyelonephritic rats via a neutrophil-dependent mechanism
    (ELSEVIER SCIENCE INC, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Biyikli, Nese Karaaslan; Tugtepe, Halil; Sener, Goksel; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Midillioglu, Sukru; Gedik, Nursal; Yegen, Berrak C.
    Background: Urinary tract infection (UTI) may cause inflammation of the renal parenchyma and may lead to impairment in renal function and scar formation. Oxidant injury and reactive oxygen species (ROS) have been found responsible in the pathogenesis of UTI. The neurohypophyseal hormone oxytocin (OT) facilitates wound healing and is involved in the modulation of immune and inflammatory processes. We investigated the possible therapeutic effects of OT against Eschericia coli induced pyelonephritis in rats both in the acute and chronic setting. Methods: Twenty-four Wistar rats were injected 0.1 ml solution containing E. coli ATCC 25922 10(10) colony forming units/ml into left renal medullae. Six rats were designed as sham group and were given 0.1 ml 0.9% NaCl. Pyelonephritic rats were treated with either saline or OT immediately after surgery and at daily intervals. Half of the pyelonephritic rats were decapitated at the 24th hour of E. coli infection, and the rest were followed for 7 days. Renal function tests (urea, creatinine), systemic inflammation markers [lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-alpha)] and renal tissue malondialdehyde (MDA) as an end product of lipid peroxidation, glutathione (GSH) as an antioxidant parameter and myeloperoxidase (MPO) as an indirect index of neutrophil infiltration were studied. Results: Blood urea, creatinine, and TNF-a levels were increased, renal tissue MDA and MPO levels were elevated and GSH levels were decreased in both of the pyelonephritic (acute and chronic) rats. All of these parameters and elevation of LDH at the late phase were all reversed to normal levels by OT treatment. Conclusion: OT alleviates oxidant renal injury in pyelonephritic rats by its anti-oxidant actions and by preventing free radical damaging cascades that involves excessive infiltration of neutrophils. (c) 2006 Elsevier Inc. All rights reserved.