Person:
İNAN, AHMET TALAT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

İNAN

First Name

AHMET TALAT

Name

Search Results

Now showing 1 - 4 of 4
  • Publication
    Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue engineering
    (SPRINGER, 2019) İNAN, AHMET TALAT; Aydogdu, Mehmet O.; Mutlu, Bilcen; Kurt, Mustafa; Inan, Ahmet T.; Kuruca, Serap E.; Erdemir, Goekce; Sahin, Yesim M.; Ekren, Nazmi; Oktar, Faik N.; Gunduz, Oguzhan
    3D bioprinting provides an innovative strategy to fabricate a new composite scaffold material consisted in a porous and rough structure with using polycaprolactone (PCL), beta-tricalcium phosphate (beta-TCP), and collagen as a building block for tissue engineering. We investigated the optimization of the scaffold properties based on the beta-TCP concentration using 3D bioprinting method. Computer-aided drawing was applied in order to digitally design the scaffolds while instead of solid filaments, materials were prepared as a blend solution and controlled evaporation of the solvent during the bioprinting was enabled the proper solidification of the scaffolds, and they were successfully produced with well-defined porous structure. This work demonstrated the feasibility of complex PCL/beta-TCP/collagen scaffolds as an alternative in the 3D bioprinting engineering to the fabrication of porous scaffolds for tissue engineering.
  • Publication
    Fabrication and characterization of hazelnut shellpowder with reinforced polymer compositenanofibers
    (2018-09-14) KARTAL, İLYAS; OKTAR, FAİK NÜZHET; EKREN, NAZMİ; İNAN, AHMET TALAT; GÜNDÜZ, OĞUZHAN; CESUR, SÜMEYYE; Şengör İ., Cesur S., Kartal İ., Oktar F. N., Ekren N., İnan A. T., Gündüz O.
  • Publication
    Nanofibrous wound dressing material by electrospinning method
    (TAYLOR & FRANCIS AS, 2019) İNAN, AHMET TALAT; Yeniay, Eda; Ocal, Leyla; Altun, Esra; Giray, Betul; Oktar, Faik Nuzhet; Inan, Ahmet Talat; Ekren, Nazmi; Kilic, Osman; Gunduz, Oguzhan
    Wound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications. [GRAPHICS] .
  • Publication
    3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior
    (PERGAMON-ELSEVIER SCIENCE LTD, 2019) İNAN, AHMET TALAT; Duymaz, Busra Tugce; Erdiler, Fatma Betul; Alan, Tugba; Aydogdu, Mehmet Onur; Inan, Ahmet Talat; Ekren, Nazmi; Uzun, Muhammet; Sahin, Yesim Muge; Bulus, Erdi; Oktar, Faik Nuzhet; Selvi, Sinem Selvin; ToksoyOner, Ebru; Kilic, Osman; Bostan, Muge Sennaroglu; Eroglu, Mehmet Sayip; Gunduz, Oguzhan
    Poly(epsilon-caprolactone) (PCL), gelatin (GT) and different concentrations of low molecular weight Halomonas levan (HLh) were combined and examined to develop physical networks serving as tissue scaffolds to promote cell adhesion for biocompatibility. Three-dimensional bioprinting technique (3D bioprinting) was employed during manufacturing the test samples and their comprehensive characterization was performed to investigate the physicochemical properties and biocompatibility. Physical properties of the printing materials such as viscosity, surface tension, and density were measured to determine optimal parameters for 3D bioprinting. The scanning electron microscope (SEM) was used to observe the morphological structure of scaffolds. Fourier-Transform Infrared Spectroscopy (FT-IR) and differential scanning calorimetry (DSC) were used to identify the interactions between the components. In-vitro cell culture assays using standard human osteoblast (Hob) cells showed increased biocompatibility of the printing materials with increasing HLh content. Thus, the formulations including the HLh are expected to be a good candidate for the production of 3D printed materials.