Person:
İNAN, AHMET TALAT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

İNAN

First Name

AHMET TALAT

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Nanofibrous wound dressing material by electrospinning method
    (TAYLOR & FRANCIS AS, 2019) İNAN, AHMET TALAT; Yeniay, Eda; Ocal, Leyla; Altun, Esra; Giray, Betul; Oktar, Faik Nuzhet; Inan, Ahmet Talat; Ekren, Nazmi; Kilic, Osman; Gunduz, Oguzhan
    Wound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications. [GRAPHICS] .
  • Publication
    Magnetic Core Shell Structures: From 0D to 1D Assembling
    (BENTHAM SCIENCE PUBL LTD, 2015) İNAN, AHMET TALAT; Ficai, Denisa; Ficai, Anton; Dinu, Elena; Oprea, Ovidiu; Sonmez, Maria; Keler, Memduh Kagan; Sahin, Yesim Muge; Ekren, Nazmi; Inan, Ahmet Talat; Daglilar, Sibel; Gunduz, Oguzhan
    Material research and development studies are focused on different techniques of bringing out nanomaterials with desired characteristics and properties. From the point of view of materials development, nowadays scientists are strongly focused on obtaining materials with predefined characteristics and properties. The morphology control seems to be a determinant factor and increasing attention is devoted to this aspect. At this moment it is possible to engineer the material's features by using different methods and materials combination for both medical and industrial applications. In the applications of chemistry and synthesis, biology, mechanics, optics solar cells and microelectronics tailoring the adjustable parameters of stoichiometry, chemical structure, shape and segregation are evaluated and opens new fields. Because of the magnetic features of nanoparticles and durable particle size, less than 100 nm, this study is aiming to describe their uses in practical applications. That's why the whole hydrodynamic magnetic core shell topic will be reviewed on this paper. Additionally, the properties acting in general sight in solid-state physics are utilized for material selection and for defining issue connecting the core, shell structure and their producing properties. Here, in the study of core/shell nanoparticle various physical and chemical synthesis routes and the effect of electrospun method are briefly discussed. Starting from a real void of the scientific literature, the existent data related to the 1D magnetic electrospun materials are reviewed. The perspectives in the medical, environmental or energetic sector is great and bring some real advantages related to the 0D core@shell structures because both mechanical and biological properties are dependent on the morphology of the materials.