Person: BİLİCİ, MUSTAFA KEMAL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
BİLİCİ
First Name
MUSTAFA KEMAL
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Investigation of the effects of welding variables on the welding defects of the friction stir welded high density polyethylene sheets(SAGE PUBLICATIONS LTD) BİLİCİ, MUSTAFA KEMAL; Bilici, Mustafa KemalModern thermoplastic materials are used in an expanding range of engineering applications, such as in the automotive industry, due to their enhanced stress-to-weight ratios, toughness, a very short time of solidification, and a low thermal conductivity. Recently, friction stir welding has started to be used in joining processes in these areas. There are many factors that affect weld performance and weld quality in friction stir welding (FSW). These factors must be compatible with each other. Due to the large number of welding variables in friction stir welding processes, it is very difficult to achieve high strength FSW joints, high welding performance, and control the welding process. Welding variables that form the basis of friction stir welding; machine parameters, tool variables, and material properties are divided into three main groups. Each welding variable has different effects on the weld joint. In this study, friction stir welds were made on high density polyethylene (HDPE) sheets with factors selected from machine parameters and welding tool variables. Although the welding performance, quality, and strength gave good results in some conditions, successful joints could not be realized in some conditions. In particular, welding defects occurring in the combination of HDPE material with FSW were investigated. Welding quality, defects, and performances were examined with macrostructure. In addition, the tensile strength values of some the joints were determined. The main purpose of this study is to determine the welding defects that occur at the joints. The causes of welding defects, prevention methods, and which weld variables caused were investigated. Welding parameters and welding defects caused by welding tools were examined in detail. In addition, the factors causing welding defects were changed in a wide range and the changes in the defects were observed.Publication Open Access Effect of tool geometry on friction stir spot welding of polypropylene sheets(BUDAPEST UNIV TECHNOL & ECON, 2012) BİLİCİ, MUSTAFA KEMAL; Bilici, M. K.The effects of tool geometry and properties on friction stir spot welding properties of polypropylene sheets were studied. Four different tool pin geometries, with varying pin angles, pin lengths, shoulder diameters and shoulder angles were used for friction stir spot welding. All the welding operations were done at the room temperature. Lap-shear tensile tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments the effect of tool geometry on friction stir spot weld formation and weld strength were determined. The optimum tool geometry for 4 mm thick polypropylene sheets were determined. The tapered cylindrical pin gave the biggest and the straight cylindrical pin gave the lowest lap-shear fracture load.Publication Open Access Investigation of Factors Affecting Friction Stir Welding of Polyethylene by ANOVA Analysis(KAUNAS UNIV TECH, 2021-08-23) BİLİCİ, MUSTAFA KEMAL; Bilici, Mustafa Kemal; Yukler, Ahmet Irfan; Kurtulmus, Memduh; Kartal, IlyasThe variables that are effective in joining high density polyethylene sheets by friction stir welding (FSW) have been investigated. In order to understand the effects of welding parameters, using Taguchi optimization, tool rotation speed, feed rate, shoulder diameter and pin diameter values were selected in a wide range. The results obtained with Taguchi optimization method were evaluated according to the highest / the best signal-noise ratio. Macro photographs taken crosssectional view taken the weld seam, SEM images and hardness measurements were used to evaluate. As a result of the evaluation, the accuracy of the optimization was found to be approximately 96 %. As a result, feed rate and shoulder diameter were determined as the most effective parameter affecting the welding quality and welding performance. These two parameters (shoulder diameter and feed rate) have found to effect of approximately 65 % on tensile strength, weld quality and hardness. Finally, it has obtained that the most effective welding parameter was the shoulder diameter with 40.81 %.