Person:
GÜLÇEBİ İDRİZ OĞLU, MEDİNE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

GÜLÇEBİ İDRİZ OĞLU

First Name

MEDİNE

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Changes in intracellular protein expression in cortex., thalamus and hippocampus in a genetic rat model of absence epilepsy
    (PERGAMON-ELSEVIER SCIENCE LTD, 2011) OGAN, AYŞE; Danis, Ozkan; Demir, Serap; Gunel, Aslihan; Aker, Rezzan Gulhan; Gulcebi, Medine; Onat, Filiz; Ogan, Ayse
    Epilepsy is a chronic disorder characterized by repeated seizures resulting from abnormal activation of neurons in the brain. Although mutations in genes related to Na+, K+, Ca2+ channels have been defined, few studies show intracellular protein changes. We have used proteomics to investigate the expression of soluble proteins in a genetic rat model of absence epilepsy Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The advantage of this technique is its high throughput quantitative and qualitative detection of all proteins with their post-translational modifications at a given time. The parietal cortex and thalamus, which are the regions responsible for the generation of absence seizures, and the hippocampus, which is not involved in this activity, were dissected from GAERS and from non-epileptic control rat brains. Proteins from each tissue sample were isolated and separated by two-dimensional gel electrophoresis. Spots that showed significantly different levels of expression between controls and GAERS were identified by nano LC-ESI-MS/MS. Identified proteins were: ATP synthase subunit delta and the 14-3-3 zeta isoform in parietal cortex; myelin basic protein and macrophage migration inhibitory factor in thalamus; and macrophage migration inhibitory factor and 0-beta 2 globulin in hippocampus. All protein expressions were up-regulated in GAERS except 0-beta globulin. These soluble proteins are related to energy generation, signal transduction, inflammatory processes and membrane conductance. These results indicate that not only membrane proteins but also cytoplasmic proteins may take place in the pathophysiology and can be therapeutic targets in absence epilepsy. (C) 2011 Elsevier Inc. All rights reserved.
  • Publication
    Ultrastructural GABA immunocytochemistry in the mossy fiber terminals of Wistar and genetic absence epileptic rats receiving amygdaloid kindling stimulations
    (ELSEVIER, 2011) AKAKIN, DİLEK; Akakin, Dilek; Sirvanci, Serap; Gurbanova, Ayten; Aker, Rezzan; Onat, Filiz; San, Tangul
    The existence of absence epilepsy and temporal lobe epilepsy in the same patient is not common in clinical practice. The reason why both types of seizures are rarely seen in the same patient is not well understood. Therefore, we aimed to investigate kindling in a well known model of human absence epilepsy, genetic absence epilepsy rats from Strasbourg (GAERS). In the present study, we analyzed whether the GABA content of GAERS that received kindling stimulations was altered in the hippocampal mossy fiber terminals compared to non-epileptic control (NEC) Wistar rats. For this purpose, we used an immunocytochemical technique at the ultrastructural level. Ultrathin sections were immunolabeled with anti-GABA antibody and transmission electron microscopy was used for the ultrastructural examination. The number of gold particles per nerve terminal was counted and the area of the nerve terminal was determined using NIH image analysis program. The GABA density was found to be higher in sham-operated GAERS than sham-operated Wistar rats. The density was increased in kindling Wistar group compared to sham-operated Wistar and kindling GAERS groups. No statistical difference was observed between sham-operated GAERS and kindling GAERS groups. The increase in GABA levels in stimulated Wistar rats may be a result of a protective mechanism. Furthermore, there may be strain differences between Wistar rats and GAERS and our findings addressing different epileptogenesis mechanisms in these strains might be a basis for future experimental studies. (C) 2010 Elsevier B.V. All rights reserved.