Person:
FEYZİOĞLU, AHMET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

FEYZİOĞLU

First Name

AHMET

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Beef Quality Classification with Reduced E-Nose Data Features According to Beef Cut Types
    (2023-02-01) FEYZİOĞLU, AHMET; Feyzioglu A., Taspinar Y. S.
    Ensuring safe food supplies has recently become a serious problem all over the world. Controlling the quality, spoilage, and standing time for products with a short shelf life is a quite difficult problem. However, electronic noses can make all these controls possible. In this study, which aims to develop a different approach to the solution of this problem, electronic nose data obtained from 12 different beef cuts were classified. In the dataset, there are four classes (1: excellent, 2: good, 3: acceptable, and 4: spoiled) indicating beef quality. The classifications were performed separately for each cut and all cut shapes. The ANOVA method was used to determine the active features in the dataset with data for 12 features. The same classification processes were carried out by using the three active features selected by the ANOVA method. Three different machine learning methods, Artificial Neural Network, K Nearest Neighbor, and Logistic Regression, which are frequently used in the literature, were used in classifications. In the experimental studies, a classification accuracy of 100% was obtained as a result of the classification performed with ANN using the data obtained by combining all the tables in the dataset.
  • PublicationOpen Access
    A low-cost remote driver sleep monitoring system
    (2022-11-01) FEYZİOĞLU, AHMET; ÇELEBİ, MEHMET FATİH; Ekşi Z., Camgöz A. N. , Özarslan M., Sözer E., Çelebi M. F. , Feyzioğlu A.
    Today, the use of smart transportation systems has become widespread due to the change in the structure of cities, technological developments, and the increase in the number of vehicles. It aims at targets such as reducing the damage to people and the environment by increasing traffic safety with smart transportation systems. In addition, one of the big problems of long-distance drivers is falling asleep while driving. This is an event that puts both the driver’s life, the passengers in the vehicle, and the vehicles on the road in danger, and puts the company in a difficult situation if it works for a company. In this direction, the driver sleep alarm project has been developed. This project is a control system based on monitoring the user, measuring, and analyzing their movements. Literature research, which is the first stage of the project, was conducted and research continued throughout the project process. Within the scope of this project, a headset was designed for the driver’s sleep alarm and a mobile application was created. The first prototype of the project was built. First, in the project, the angle values made by the driver\"s head were produced with the IMU connected to the microcontroller. 10° to 20° margins identified as sleeping state for roll, pitch, and yaw angles. Later, a wearable headset was designed for the driver. Based on these angles produced in the microcontroller, an algorithm has been created that detects whether the driver is asleep. These generated angle values and status information were transferred from the headset to the mobile application via Bluetooth. This data transferred in the mobile application is reflected on the screen. In addition, an algorithm has been created in the mobile application, which sends a notification to the driver when sleep status is detected and sends an informative SMS to the headquarters if the driver is unresponsive to this notification. For the second prototype, it was aimed to produce a PCB for the headset and thus make a new mechanical design. Data mining applications are planned with the collected data from drivers for future works.
  • PublicationOpen Access
    Axiomatic Design Approach for Nonlinear Multiple Objective Optimizaton Problem and Robustness in Spring Design
    (INST INFORMATION & COMMUNICATION TECHNOLOGIES-BULGARIAN ACAD SCIENCES, 2017-03-01) FEYZİOĞLU, AHMET; Feyzioglu, Ahmet; Kar, A. Kerim
    This paper gives general information about multi-objective, axiomatic and robust design approaches and considers a solution model of nonlinear multi objective optimization problem based on applying a new robust design approach. Both axiomatic and robust design approaches were used complementarily in a case study with distinct multi-objectives. In this case study, the main target was achieving each objective optimum to minimize the mass and the shear stress of a spring by integrating robustness and durability at the design stage due to trade off between objectives. This spring problem was examined using the independence axiom of the axiomatic design methodology. Also, semangularity and reangularity concepts were used and design matrices were formed to find coupled and decoupled solutions. It was observed that there were some acceptable design parameter values for which the design became decoupled. Graphical and numerical results were checked to see if they were compatible with each other. Finally, this decoupled design was given appropriate tolerances by using robust design method. This way, a robust and durable spring was designed which would satisfy the given specifications with minimum cost in the existing literature from the view point of axiomatic design approach.
  • PublicationOpen Access
    Development of Control Strategies and Implementation to Electrical Water Heaters for Energy Conservation
    (INST INFORMATION & COMMUNICATION TECHNOLOGIES-BULGARIAN ACAD SCIENCES, 2016-12-01) FEYZİOĞLU, AHMET; Feyzioglu, Ahmet; Kar, A. Kerim
    Optimum design for storage type Electric Water Heaters (EWHs) was analyzed for energy conservation and maximum hot water output. Single and dual tank EWHs were compared with each other. For each comparison, data were gathered for tank volumes and power ratings ranging 100-400 l and 1-4 kW respectively. Different dual tank EWHs were designed with different control mechanisms to find which one had the optimum outcome. For these comparisons, dual tank EWHs in which the upper part of the tanks had 25% of the total volume and 75% of the total power rating were used. A five day usage period of an EWH in a typical household was simulated on SIMULINK. To minimize this energy loss, transient analysis on FLUENT was performed to see how long it took for the outlet water temperature. In these simulations, single and dual tank EWHs with different control mechanisms were compared with each other to find the design with minimum energy consumption and maximum hot water output. From these results the most efficient control system cost analysis was determined for minimum operating cost and minimum carbon footprint through optimized control strategies.
  • PublicationOpen Access
    A study on the control system of electric water heaters for decarbonization
    (2023-03-01) FEYZİOĞLU, AHMET; Feyzioğlu A.
    Greenhouse gas (GHG) emissions have significantly increased in recent years as a result of population rise and the increase in the number of residences, with high levels of energy use in homes and household appliances. It is crucial to move the housing industry away from high-carbon sources and toward low-carbon sources in order to minimize greenhouse gas emissions as a precaution. One of the most crucial systems that needs to be provided in order to achieve energy efficiency is the electric water heater (EWH), as they rank among the top electricity consumers. In this study, a double-tank EWH model was developed and simulated at various tank sizes (100 L, 200 L, 300 L and 400 L) and power ratios (1 kW, 2 kW, 3kW and 4 kW) in order to demonstrate energy efficiency. To obtain information for the simulation analysis of the tanks, the hourly water usage of 25 houses was measured. The single-tank and the double-tank models created for this study were both run in the Matlab/Simulink environment with an on-off controller applied, and their energy consumption was compared. Amounts were also determined based on how much energy both tanks consumed. It has been noted that the amount of GHG emissions is also reduced because the double tank uses less energy than the single tank does. The simulation showed that compared to the single tank, the dual tank produced 46.62% less GHG emissions at 45 W power and 47.51% less GHG emissions at 80 W.
  • PublicationOpen Access
    Numerical analysis of multipurpose shell-tube-heat exchanger withal stylized geometry at different baffle gaps and various flow rates
    (2023-12-01) FEYZİOĞLU, AHMET; Kartal D. M. A., Feyzioğlu A.
    The effects of changing 90 mm and 110 mm plate spacings and FR factor of 0.9 kg/h, 1.3 kg/h, 1.7 kg/h, 1.9 kg/h on the total heat transfer performance and PD in the new design HX were examined. The results obtained by taking into account the change in plate spacing and FR factor of 0.9 kg/h, 1.3 kg/h, 1.7 kg/h and 1.9 kg/h, as well as variable factors, were transferred to the study and displayed in figures. In the study, firstly, the results of HCO obtained by changing FR and range were monitored. In the analysis, the interval values were 90 mm and 110 mm and the changes in the FR values of 0.9 kg/h, 1.3 kg/h, 1.7 kg/h and 1.9 kg/h increased in direct proportion. The smallest value of the heat transfer rate was obtained at 110 mm plate spacing and 0.9 kg/h FR. In addition, if the plate spacing was 90 mm, the smallest HCO was obtained at 0.9 kg/h. The largest HCO was obtained when the plate spacing was 90 mm and FR was 1.9 kg/h. In the second part of the study, the results of PD obtained by changing FR and gap were monitored. In the analysis, the interval values were 90 mm and 110 mm and the changes in FR values of 0.9 kg/h, 1.3 kg/h, 1.7 kg/h and 1.9 kg/h increased in direct proportion. The smallest value of PD level was obtained at 90 mm plate spacing and 0.9 kg/h FR. In addition, if the plate spacing was 110 mm, the smallest heat transfer coefficient was obtained at 0.9 kg/h. The largest PD value was obtained when the plate spacing was 110 mm and FR was 1.9 kg/h. In the last part of the study, the results obtained by changing FR and range of the HTPD value were monitored. In the analysis, the interval values were 90 mm and 110 mm, and the changes in FR values of 0.9 kg/h, 1.3 kg/h, 1.7 kg/h and 1.9 kg/h decreased in direct proportion. The smallest value of the HTPD level was obtained at 110 mm plate spacing and 1.9 kg/h FR. In addition, if the plate spacing was 90 mm, the smallest HTPD value was obtained at 1.9 kg/h. The highest HTPD value was obtained when the plate spacing was 90 mm and FR was 0.9 kg/h. Therefore, choosing a system with a 90 mm plate spacing and a FR of 0.9 kg/h will be more efficient in terms of thermohydraulic performance and pressure balancing. As a result, it was concluded that if the plate spacing was selected as 90 mm, a 15 % improvement could be achieved compared to the system design with a 110 mm plate spacing. As a new, it is thought that it will contribute to the literature in future studies, as the thermal performance, pressure drop and heat transfer coefficient results obtained at new flow rate values and compartment spacing values are obtained for the first time in a new STH designed in different dimensions than the literature.
  • PublicationOpen Access
    Purification of olive mill waste: a circular economy model for the Mediterranean region
    (2024-06-01) FEYZİOĞLU, AHMET; ERSOY, SEZGİN; FEYZİOĞLU A., ERSOY S., OMORUYI T. U., SANTORO D., PICCINETTI L.
    When olive mill wastewater is given directly to nature without being treated, natural waters become coloured, aquatic life is adversely affected, surface and underground waters are polluted, bad odours occur, and soil quality deteriorates. For these reasons, waste water is not allowed to be poured into soil and water without being discharged. This problem has become a problem that needs to be solved for the Mediterranean countries. With this study, acid cracking and chemical treatability studies achieved the conversion of the physicochemical pretreatment process of olive black water to an automation system. With the applied processes, removal efficiencies of 85% for Chemical Oxygen Demand, 99% for suspended solids, 97% for oil grease and 92% for phenol were obtained. Since the mixing processes of the tanks in the chemical additions are long, the heating chamber in the acid cracking process is designed larger than the tanks. Thus, when there is a black water density in the system, the heating tank in this system can be used as a heating and resting tank in sudden densities in this system. This waste separation process includes producing raw materials, protecting natural resources, and increasing sustainability. In particular, separating the phenol material and making it usable have been essential gains. Keywords: life cycle practice; sustainability; olive processing; olive mill wastewater; Mediterranean countries
  • PublicationOpen Access
    Numerical Analysis of Altered Parallel Flow Heat Exchanger with Promoted Geometry at Multifarious Baffle Prolongs
    (2024-04-01) FEYZİOĞLU, AHMET; Kartal M. A., Feyzioğlu A.
    This study investigated the influence of BFFSP on the thermohydraulic performance of a SATHEC(s) using a novel computational approach. The novelty lies in the detailed exploration of the interplay between BFFSP, MFRT, and key performance parameters. Unlike prior studies, which often focus on a limited range of operating conditions, this work employs a comprehensive parametric analysis encompassing two BFFSPs (95 mm and 125 mm) and four MFRTs (0.1, 0.3, 0.5, and 0.7 kg/h). This extensive analysis provides a deeper understanding of the trade-off between the HTRFR enhancement and PDP associated with the BFFSP across a wider range of operating conditions. This investigation leverages the power of computational fluid dynamics (CFD) simulations for highfidelity analysis. ANSYS Fluent, a widely recognized commercial CFD software package, was used as a computational platform. A three-dimensional steady-state model of HEXR geometry was established. The cold fluid was modeled as water, and the hot fluid was modeled as water. The selection of appropriate turbulence models is crucial for accurate flow simulations within the complex geometry of HEXR. This study incorporates a well-established two-equation turbulence model to effectively capture turbulent flow behavior. The governing equations for mass, momentum, and energy conservation were solved numerically within the CFD framework. Convergence criteria were meticulously established to ensure the accuracy and reliability of the simulation results. BFFs are crucial components in HEXRs as they promote fluid mixing and turbulence on the HTRFR surface, thereby enhancing HTRFR. This study explores the interplay between BFFSP and HTRFR effectiveness. It is hypothesized that a larger BFFSP (125 mm) might lead to a higher HTC owing to the increased fluid mixing. However, the potential drawbacks of the increased PDP due to the flow restriction also need to be considered. The PDP across the HEXR is a critical parameter that affects pumping costs and overall system yield. This study investigates the impact of BFFSP on the PDP. It is expected that a larger BFFSP (125 mm) will result in a higher PDP, owing to the increased resistance to fluid flow. Here, we aim to quantify the trade-off between enhanced HTRFR and increased PDP associated with different BFFSPs. The optimal design of an HEXR seeks a balance between achieving a high HTRFR rate and minimizing pressure losses. HTRPD, a metric combining both HTC and PDP, was employed to evaluate the thermohydraulic performance. We hypothesized that a specific BFFSP might offer a superior HTRPD, indicating an optimal balance between HTRFR effectiveness and PDP for the investigated HEXR geometry and operating conditions. CFD simulations were conducted using ANSYS Fluent to analyze the effects of BFFSP and MFRT on the HTC, PDP, and HTRPD. The simulations employed a commercially available HEXR geometry with water as the cold and hot fluid. The results are presented and discussed to elucidate the relationships between the BFFSP, MFRT, and key performance parameters of the HEXR. This study provides valuable insights into the influence of BFFSP on the thermohydraulic performance of HEXRs. The findings can aid in optimizing the HEXR design by identifying the BFFSP that offers the best compromise between HTRFR enhancement and PDP for specific operating conditions. The results contribute to the knowledge base of HEXR design and optimization, potentially leading to improved yield in various industrial applications. The results indicate that a larger BFFSP (125 mm) leads to higher outlet temperatures but also results in a higher PDP compared to the 95 mm design. Conversely, the 95 mm BFFSP exhibits a lower PDP but achieves a lower HTC. In terms of thermohydraulic performance, as indicated by HTRPD, the 95 mm BFFSP with the lowest MFRT (0.1 kg/h) achieved the highest value, surpassing the 125 mm design by 19.81%. This suggests that a 95 mm BFFSP offers a better trade-off between HTRFR effectiveness and pressure loss, potentially improving the overall HEXR performance.
  • PublicationOpen Access
    Application of Heat Treatment to Aluminum Alloy Wires and Comparison of Full Alloy AAAC Conductor Manufactured with These Wires and Conventional ACSR Stranded Conductors
    (2022-03-01) FEYZİOĞLU, AHMET; KISTI E., SAYIN E., OCAK N., FEYZİOĞLU A.
    Geleneksel ACSR iletkenleri, alüminyum tellerin çelik bir çekirdek üzerine bükülmesiyle oluşturulur. Çelik çekirdek akım taşımaya katkı sağlamaz ve sadece taşıma amaçlı kullanılır. Hat ağırlığının artmasında çelik kısmın rolü büyüktür. Hat ağırlığının artması ile daha kısa mesafelerde daha uzun direkler kullanılır ancak taşıma görevini üstlendiği için çelik özden vazgeçilemez. Günümüzde ACSR konvansiyonel iletkenine alternatif arayışları hızlanmıştır. Bu alternatiflerden biri de AAAC'dir (Tam alüminyum alaşımlı iletkenler). AAAC'de bulunan teller özel alaşımlı üretim ile sertleştirilmiş olup, merkezde taşıyıcı olarak çelik öz ihtiyacını ortadan kaldırır. Alüminyum havai hat iletkeni üretilirken alüminyum külçeler ergitme fırınlarında eritilip, dinlenme fırınlarına alındıktan sonra içine Si, Mg gibi alaşım elementlerinin belirli oranlarda ilave edilmesinden sonra bakır bir kalıba dökülerek katılaştırılır. Refrakter yolluklardan geçerek haddeleme işleminden sonra 9,5 mm veya 12 mm Alüminyum Alaşımlı çubuk (filmaşin) yarı mamülleri üretilmektedir. Üretilecek havai hat iletkeni için standartlarda belirlenen çapta tel üretilirken, 9,5 mm veya 12 mm Alüminyum çubuk (filmaşin) yarı mamul çekme işleminde belirli bir küçültme oranı ile inceltilir ve istenilen çapta alüminyum tel elde edilir. Çekme işleminde filmaşin, makineye ve üretilecek nihai ürüne uygun bir indirgeme oranı ile haddelenir. Üretilen teller standartlardaki adım oranı ile bir araya getirilerek bir iletken oluşturulur. Üretilen alüminyum alaşımlı telin, mekanik ve elektriksel özelliklerini kazanmak için ısıl işlem fırınlarında belirli bir zaman ve sıcaklıkta ısı uygulanır. Bu çalışmada uygulanan ısıl işlem süresi ve derecesi dikkate alınarak ısıl işlem öncesi ve sonrası özellikler karşılaştırılacak ve ısıl işlemin tele etkisi deneysel çalışmalarla gösterilecektir. Alaşımlı tellerden yapılmış AAAC 774 AL7 iletkeni ile çelik çekirdek üzerine örülmüş alüminyum tellerden yapılmış ACSR Pheasant iletkenlerinin mekanik ve elektriksel testleri yapılacak ve hat seçiminde bazı parametreler dikkate alınarak iki iletken karşılaştırılacaktır.