Person: ŞENER, AZİZE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ŞENER
First Name
AZİZE
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Synthesis of Diflunisal Thiazolidinones as Anticancer Agents(BENTHAM SCIENCE PUBL LTD, 2016) ŞENER, AZİZE; Senkardes, Sevil; Ozakpinar, Ozlem B.; Ozsavci, Derya; Sener, Azize; Cevik, Ozge; Kucukguzel, S. GunizA series of diflunisal 4-thiazolidinones were synthesized. Some selected compounds were determined at one dose towards the full panel of 60 human cancer cell lines by National Cancer Institute. 2',4'-Difluoro-4-hydroxy-N-[4-oxo-2-(thiophen-2-yl)-1,3-thiazolidin-3-yl]biphenyl-3-carboxamide (4a) demonstrated the most marked effect on K-562 cancer cell line with 58.59 % growth inhibition at 10 mu M. Compound 4a was evaluated in vitro using the MTT colorimetric method against human leukemia cell line K-562 and mouse embryonic fibroblasts cell line NIH-3T3 at different doses for cell viability and growth inhibition. Compound 4a exhibited anticancer activity with IC50 value of 5.2 mu M against K-562 cells and did not display cytotoxicity towards NIH-3T3 cells compared with diflunisal. In addition, this compound could be an interesting prototype as an antiproliferative agent.Publication Metadata only Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury(ELSEVIER SCIENCE INC, 2012) ŞENER, AZİZE; Ersahin, Mehmet; Cevik, Ozge; Akakin, Dilek; Sener, Azize; Ozbay, Latif; Yegen, Berrak C.; Sener, GokselSpinal cord injury (SCI) leads to an inflammatory response that generates substantial secondary damage within the tissue besides the primary damage. Leukotrienes are biologically active 5-lipoxygenase products of arachidonic acid metabolism that are involved in the mediation of various inflammatory disorders including SCI. In this study, we investigated the possible protective effects of montelukast, a leukotriene receptor blocker, on SCI-induced oxidative damage. Wistar albino rats (n = 24) were divided randomly as control, vehicle- or montelukast (10 mg/kg, ip)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a moderately severe injury at T10 was used. Vehicle or montelukast were administered to the injured animals 15 min after injury. At seven days post-injury, neurological examination was performed and rats were decapitated. Blood samples were taken to evaluate leukotriene 134 levels, and pro-inflmamatory cytokines (TNF-alpha, IL-1 beta) while in spinal cord and urinary bladder samples malondialdehyde (MDA), glutathione (GSH), luminol chemiluminescence (CL) levels and myeloperoxidase (MPO) and caspase-3 activities were determined. Tissues were also evaluated histologically. SCI caused significant decreases in tissue GSH, which were accompanied with significant increases in luminol CL and MDA levels and MPO and caspase-3 activities, while pro-inflammatory cytokines in the plasma were elevated. On the other hand. montelukast treatment reversed these parameters and improved histological findings. In conclusion, SCI caused oxidative tissue injury through the activation of pro-inflammatory mediators and by neutrophil infiltration into tissues, and the neuroprotective and antiapoptotic effects of montelukast are mediated by the inhibition of lipid peroxidation, neutrophil accumulation and proinflammatory cytokine release. Moreover, montelukast does not only exert antioxidant and antiapoptotic effects on the spinal cord, but it has a significant impact on the bladder tissue damage secondary to SCI. (C) 2012 Elsevier Inc. All rights reserved.Publication Open Access New in vitro effects of clopidogrel on platelets in hyperlipidemic and healthy subjects(GALENOS YAYINCILIK, 2010-06-01) ŞENER, AZİZE; Ozsavci, Derya; Sener, Azize; Oba, Rabia; Demirel, Guelderen Yarukkaya; Uras, Fikriye; Yardimci, Turay KevserObjective: We aimed to detect novel in vitro effects of clopidogrel on platelets by assessment of the following parameters: malondialdehyde, glutathione, nitrite, aggregation response, and expressions of P-selectin, fibrinogen, apolipoprotein A1, apolipoprotein B, and phosphatidylserine. Materials and Methods: Platelets were obtained from healthy (n: 9) and hyperlipidemic (n: 9) volunteers. Expressions of P-selectin, fibrinogen, apolipoproteins A1/B and phosphatidylserine with and without clopidogrel were assayed by flow cytometry. Malondialdehyde, glutathione, aggregation and nitrite levels were also assayed. Results: Without clopidogrel, the baseline values of platelet aggregation, malondialdehyde, and expressions of P-selectin, fibrinogen and phosphatidylserine were significantly higher, whereas nitrite and expression of apolipoproteins A1/B were significantly lower in hyperlipidemics than in the healthy group. In both groups, clopidogrel significantly reduced aggregation and expression of fibrinogen, but it elevated nitrite levels. Clopidogrel significantly decreased P-selectin and phosphatidylserine expression and malondialdehyde but increased expressions of apolipoproteins A1/B only in hyperlipidemics. Conclusion: It seems that clopidogrel has some new in vitro antiplatelet effects. The present study is a basic in vitro study to suggest new insights into the effects of clopidogrel on platelet functions. (Turk J Hematol 2010; 27: 99-108)