Person: ŞAHİN, ALİ
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ŞAHİN
First Name
ALİ
Name
42 results
Search Results
Now showing 1 - 10 of 42
Publication Metadata only Antitumor and antimetastatic effects of walnut oil in esophageal adenocarcinoma cells(CHURCHILL LIVINGSTONE, 2018) ŞAHİN, ALİ; Batirel, Saime; Yilmaz, Ayse Mine; Sahin, Ali; Perakakis, Nikolaos; Ozer, Nesrin Kartal; Mantzoros, Christos S.Background: Walnuts contain many components including specific fatty acids, which could be active against cancer. Even though the anticarcinogenic effect of some of the individual fatty acids in walnut oil has been described, the effect of walnut oil itself on esophageal cancer cells hasn't yet been investigated. Objective: We aimed to investigate whether walnut oil affects tumor growth and metastatic potential in esophageal cancer cells. Methods: The human esophageal adenocarcinoma cell line, OE19, was treated with different doses of walnut oil and cell viability, apoptosis/necrosis and cell cycle analyses were performed using WST-1 assay and flow cytometry respectively. Adhesion, colony formation and wound healing assays were performed to assess the antimetastatic effects of walnut oil. NFkB expression was evaluated with western blot analysis. Results: Walnut oil decreased the cell viability of esophageal cancer cells in a dose-dependent manner. 20 mg/mL walnut oil reduced cell viability by similar to 50% when compared with control. The analysis revealed that necrosis and accumulation of cells in G0/G1 phase was induced in the cells treated with high doses of walnut oil. It also down-regulated the protein levels of NFkB. Walnut oil suppressed the adhesion, migration and colony formation of the cells. Conclusions: High-dose short-term administration of walnut oil reduces the cell viability and metastatic ability of esophageal cancer cells, while exhibiting anticarcinogenic effect by inducing necrosis and cell cycle arrest at the G0/G1 phase, probably through suppression of the NFkB pathway. These data indicate that walnut oil, and by extension walnut consumption, may have beneficial effects in esophageal cancer in humans. This should be tested by clinical trials in the future. (C) 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.Publication Metadata only Evidence that osteogenic and neurogenic differentiation capability of epidural adipose tissue-derived stem cells was more pronounced than in subcutaneous cells(TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, 2020) ŞAHİN, ALİ; Solmaz, Bilgehan; Sahin, Ali; Kelestemur, Taha; Kilic, Ertugrul; Kaptanoglu, ErkanBackground/aim: The management of dura-related complications, such as the repairment of dural tears and reconstruction of large dural defects, remain the most challenging subjects of neurosurgery. Numerous surgical techniques and synthetic or autologous adjuvant materials have emerged as an adjunct to primary dural closure, which may result in further complications or side effects. Therefore, the subcutaneous autologous free adipose tissue graft has been recommended for the protection of the central nervous system and repairment of the meninges. In addition, human adipose tissue is also a source of multipotent stem cells. However, epidural adipose tissue seems more promising than subcutaneous because of the close location and intercellular communication with the spinal cord. Herein, it was aimed to define differentiation capability of both subcutaneous and epidural adipose tissue-derived stem cells (ASCs). Materials and methods: Human subcutaneous and epidural adipose tissue specimens were harvested from the primary incisional site and the lumbar epidural space during lumbar spinal surgery, and ASCs were isolated. Results: The results indicated that both types of ASCs expressed the cell surface markers, which are commonly expressed stem cells; however, epidural ASCs showed lower expression of CD90 than the subcutaneous ASCs. Moreover, it was demonstrated that the osteogenic and neurogenic differentiation capability of epidural adipose tissue-derived ASCs was more pronounced than that of the subcutaneous ASCs. Conclusion: Consequently, the impact of characterization of epidural ASCs will allow for a new understanding for dural as well as central nervous system healing and recovery after an injury.Publication Open Access Controlled delivery of amoxicillin and rifampicin by three-dimensional polyvinyl alcohol/bismuth ferrite scaffolds(2023-05-01) ULAĞ, SONGÜL; ŞAHİN, ALİ; Ilgar S., ULAĞ S., ŞAHİN A., GÜNDÜZ O., Ustundag C. B.Skin is a protective barrier that can protect against environmental influences and renew itself. However, in some cases, this regenerative property is lost, and this causes delays in wound healing. Wound healing is a complex and long-lasting phase. Any bacterial infection during the wound healing process delays wound healing. The therapeutic efficacy can be increased by using nanocarrier drug delivery systems to the target tissue with modern wound dressings. Controlled nano drug delivery systems increase the therapeutic efficacy in the treatment of diseases and provide a faster recovery process. In this study, amoxicillin (AMX) and rifampicin (RIF) were loaded into the bismuth ferrite (BFO) particles which were synthesized with the co-precipitation method. Then, these drug-loaded BFO particles (0.075 %) were added separately to 13 % polyvinyl alcohol (PVA) solution and the solutions were printed three-dimensionally to obtain three dimensional scaffolds. With these designed scaffolds, it is aimed to reduce the risk of inflammation in wound tissues and increase therapeutic efficacy with controlled release. The SEM images proved that homogeneous pore distributions could be achieved with these combinations. The tensile test results showed that drug-loaded BFO addition increased the mechanical strength of the 13 % PVA scaffold. The biocompatibility test results demonstrated that the highest viability values of the human adipose tissue-derived mesenchymal stem cells were obtained for AMX-added 13 % PVA scaffolds.Publication Metadata only ER stress related lipid accumulation and apoptotic cell death in nonalcoholic fatty liver diesease(ELSEVIER SCIENCE INC, 2017) ŞAHİN, ALİ; Demirel, Tugce; Sozen, Erdi; Sahin, Ali; Karademir, Betul; Ozer, Nesrin KartalPublication Metadata only Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers(2023-03-29) ŞAHİN, ALİ; Seyhan S. A., Alkaya D. B., Cesur S., Sahin A.Publication Open Access 3D-Printed PCL scaffolds combined with juglone for skin tissue engineering(2022-08-30) ŞAHİN, ALİ; Ayran M., Dirican A., Saatcioglu E., Ulag S., Sahin A., Aksu B., Croitoru A., Ficai D., Gunduz O., Ficai A.; Tıp FakültesiSkin diseases are commonly treated with antihistamines, antibiotics, laser therapy, topical medications, local vitamins, or steroids. Since conventional treatments for wound healing (skin allografts, amnion, xenografts, etc.) have disadvantages such as antigenicity of the donor tissue, risk of infection, or lack of basement membrane, skin tissue engineering has become a popular new approach. The current study presents the design and fabrication of a new wound-dressing material by the addition of Juglone (5-hydroxy-1,4-naphthoquinone) to a 25% Polycaprolactone (PCL) scaffold. Juglone (J) is a significant allelochemical found in walnut trees and, in this study is used as a bioactive material. The effects of different amounts of J (1.25, 2.5, 5, 7.5, and 10 mg) on the biocompatibility, mechanical, chemical, thermal, morphological, and antimicrobial properties of the 3D-printed 25% PCL scaffolds were investigated. The addition of J increased the pore diameter of the 25% PCL scaffold. The maximum pore size (290.72 ± 14 µm) was observed for the highest amount of J (10 mg). The biocompatibility tests on the scaffolds demonstrated biocompatible behavior from the first day of incubation, the 25% PCL/7.5 J scaffold having the highest viability value (118%) among all of the J-loaded scaffolds. Drug release of J into phosphate buffered saline (PBS) at pH 7.4 showed that J was completely released from all 25% PCL/J scaffolds within 7 days of incubationPublication Open Access Fabrication of gentamicin sulfate-loaded 3d-printed polyvinyl alcohol/sodium alginate/gelatin-methacryloyl hybrid scaffolds for skin tissue replacement(2023-01-01) ULAĞ, SONGÜL; ŞAHİN, ALİ; AKSU, MEHMET BURAK; GÜNDÜZ, OĞUZHAN; Izgordu M. S., Ayran M., ULAĞ S., Yildirim R., Bulut B., ŞAHİN A., Guncu M. M., AKSU M. B., GÜNDÜZ O.3D-printed scaffolds can better mimic the function of human skin, both biologically and mechanically. Within the scope of this study, the effect of the addition of different amounts (10, 15, 20 mg) of gentamicin sulfate (GS) to a 10 mL solution of natural and synthetic polymers is investigated. Sodium alginate (SA), gelatin-methacryloyl (GelMA), and polyvinyl alcohol (PVA) are chosen as bioactive materials. The surface morphology and pore structures are visualized by scanning electron microscopy (SEM). According to the results, it is observed that the pore sizes of all scaffolds are smaller than 270 µm, the lowest value (130 µm) is obtained in the scaffold loaded with 15 mg GS, and it also has the highest tensile strength value (12.5 ± 7.6 MPa). Similarly, it is observed that the tensile strength (9.7 ± 4.5 MPa) is high in scaffold loaded with 20 mg GS. The biocompatibility test is performed with fibroblast cells, and the results show that the scaffolds are biocompatible with cells. The antibacterial test is carried out against the S.aureous and E. coli and the results indicate that all GS-loaded scaffolds demonstrate antibacterial activity.Publication Metadata only The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells(Elsevier Ltd, 2022) ŞAHİN, ALİ; Pinar E., Sahin A., Unal S., Gunduz O., Harman F., Kaptanoglu E.Stem cell destiny can be controlled with scaffold biomaterials in tissue engineering and regenerative medicine. This study aimed to investigate the neuronal differentiation potential of human adipose tissue-derived mesenchymal stem cells in graphene nanofiber matrix in vitro. Stem cell isolation was performed from adipose tissue taken from human by mechanical and enzymatic methods. The differentiation potential was examined after incubation of adipose stem cells in normal medium and neural differentiation medium, on graphene oxide (GO) and polycaprolactone (PCL) composite scaffolds produced by electrospinning technique. In vitro studies indicated that the presence of GO in PCL scaffold increases an effect on cell attachment, proliferation, infiltration into the scaffold, and neuronal differentiation. Also, unlike subcutaneous tissue, it has been shown immunohistochemically that mesenchymal stem cells derived from epidural adipose tissue tend to differentiate into oligodendrocytes. © 2022 Elsevier LtdPublication Open Access Electrically triggered quercetin release from polycaprolactone/Bismuth ferrite microfibrous scaffold for skeletal muscle tissue(2023-03-11) ŞAHİN, ALİ; Ayran M., Karabulut H., Deniz K. I., Akcanli G. C., Ulag S., Croitoru A., Tihăuan B., Sahin A., Ficai D., Gunduz O., et al.Abstract: Skeletal muscle tissue engineering presents a promising avenue to address the limitations pertaining to the regenerative potential of stem cells in case of injury or damage. The objective of this research was to evaluate the effects of utilizing novel microfibrous scaffolds, containing the compound quercetin (Q), on skeletal muscle regeneration. Morphological test results showed us that the combination of bismuth ferrite (BFO), polycaprolactone (PCL), and Q were bonded and well-ordered with each other, and a uniform microfibrous structure was obtained. Antimicrobial susceptibility testing of PCL/BFO/Q was conducted, and microbial reduction was found to be over 90% in the highest concentration of Q-loaded microfibrous scaffolds with the most inhibitory effect on S. aureus strains. Further, biocompatibility was investigated by performing MTT testing, fluorescence testing, and SEM imaging on mesenchymal stem cells (MSCs) to determine whether they could act as suitable microfibrous scaffolds for skeletal muscle tissue engineering. Incremental changes in the concentration of Q led to increased strength and strain, allowing muscles to withstand stretching during the healing process. In addition, electrically conductive microfibrous scaffolds enhanced the drug release capability by revealing that Q can be released significantly more quickly by applying the appropriate electric field, compared with conventional drug-release techniques. These findings suggest a possible use for PCL/BFO/Q microfibrous scaffolds in skeletal muscle regeneration by demonstrating that the combined action of both guidance biomaterials was more successful than Q itself acting alone.Publication Open Access Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson's Disease(MDPI, 2021-11-13) ŞAHİN, ALİ; Saylam, Ezgi; Akkaya, Yigit; Ilhan, Elif; Cesur, Sumeyye; Guler, Ece; Sahin, Ali; Cam, Muhammmet Emin; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, Oguzhan; Ficai, Denisa; Ficai, AntonParkinson's disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson's disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson's disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100-200 mu m were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson's disease in neural tissue engineering applications.