Person:
ÖZTÜRK, ZUHAL

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ÖZTÜRK

First Name

ZUHAL

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Quantifying the impact of data replication on error propagation
    (2022-09-01) ÖZTÜRK, ZUHAL; TOPCUOĞLU, HALUK RAHMİ; ÖZTÜRK Z., TOPCUOĞLU H. R. , Kandemir M. T.
    Various technological developments in the microprocessor world make modern computing systems more vulnerable to soft errors than in the past, and consequently fault tolerance techniques are becoming increasingly important in various application domains. While in general fault tolerance methods are known to achieve high levels of reliability, they can also introduce significant performance, energy, and memory overheads, which can be reduced by employing such techniques selectively, as opposed to indiscriminately. Data Replication is used to prevent error propagation across hardware components and application program data structures by replicating application program\"s data. When using data replication, many factors need to be taken into account, including which data structures/elements to replicate, how many times to replicate a given data element, and which threads to protect (in a multithreaded application). These and similar factors define what can be termed as \"replication space\". This study defines a replication space, and systematically explores protection techniques of various strengths/degrees, quantifying their impacts on memory consumption, performance, and error propagation. Our experimental analysis reveals that different degrees of protection levels bring different outcomes based on the application specifics. In particular, while error propagation is limited, to a certain extent, when employing data replication in multithreaded applications where the thread do not communicate/share data much, the speed of error propagation across threads can be quite fast in applications where threads are more tightly coupled. Additionally, our results indicate that in certain cases where error propagation is low, the effect of data replication on error propagation can be negligible.
  • PublicationOpen Access
    Studying error propagation on application data structure and hardware
    (2022-11-01) ÖZTÜRK, ZUHAL; TOPCUOĞLU, HALUK RAHMİ; ÖZTÜRK Z., TOPCUOĞLU H. R., Kandemir M. T.
    As technology scales, transistors become smaller and aggressive power optimization techniques combined with high operation frequencies and performance-enhancing microarchitectural techniques are employed to achieve increasingly higher performance and power efficiencies. Unfortunately, these developments make the modern systems more vulnerable to soft errors, which are becoming a critical issues in both hardware and software domains. Motivated by this observation, in this work, we propose, implement, and evaluate two error propagation metrics in order to characterize error propagation at both software and hardware levels. The first metric aims to measure error propagation on program data structures, whereas the second one measures the fraction of corrupted locations in the cache memory structure for a given period of time. We evaluate our proposed metrics by performing an empirical study of two application programs using both single-threaded and multi-threaded executions, and varying various experimental parameters such as thread count, error rate, location of errors, and architectural parameters. Our extensive experimental analysis reveals that error propagation over program data structures is highly dependent on application behavior.Further, depending on the cache parameters used, propagation of errors on cache can exhibit different patterns. This paper also discusses how our observed error propagation trends in program data structures and data caches are correlated with each other, focusing in particular on the differences in error propagation speeds in application data structures and data caches.