Person:
ŞENER, RAMAZAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ŞENER

First Name

RAMAZAN

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine
    (ELSEVIER SCI LTD, 2020) GÜL, MEHMET ZAFER; Sener, Ramazan; Yangaz, Murat Umut; Gul, Mehmet Zafer
    The diesel engine is widely used due to its thermal efficiency, reliability and fuel economy, while diesel engine emissions are harmful to the environment and human health. Therefore, the standards (EPA, Tier, NRE-v/c standards, etc.) limit the exhaust emission of engines around the world. The most successful method of reducing emissions is to optimize the combustion chamber and the fluid motion inside the engine. In this study, experimental and numerical methods were used in a diesel engine to analyze fluid motion, spray, combustion process, and exhaust emissions. A new type of swirl piston bowls and a reentrant piston bowl were utilized on a baseline diesel engine. Different spray angles and injection pressures were applied and results were compared with the baseline design. Results show that the piston bowl shape has a critical influence on engine performance and emissions. Since the multi-swirl piston bowl (MSB) and double-swirl piston bowl (DSB) design increases in-cylinder swirl and turbulence, it contributes to reducing emissions and improving the combustion process. Increasing spray angle and injection pressure and using of DSB can reduce the soot emissions by 81%. DSB and MSB improve the combustion process but also increase NOx emissions due to increased in-cylinder temperature. On the other hand, NOx emissions may also be reduced if the injection parameters of the engine are optimized to provide the same power with the new swirl bowls.
  • Publication
    Influence of piston bowl geometry on combustion and emission characteristics
    (SAGE PUBLICATIONS LTD, 2019) ÖZDEMİR, MEHMED RAFET; Sener, Ramazan; Ozdemir, Mehmed R.; Yangaz, Murat U.
    Together with the global energy concerns, the norms are getting stringent to prevent the emission threat. There are on-going studies on systems working with both fossil and renewable energy sources aiming to create more efficient and less emissive processes and devices. Accordingly, a set of numerical simulations was performed to examine the effect of the bowl shape of a piston on the performance behaviour, emission rates and combustion characteristics in a four-cylinder, four strokes, water-cooled compression ignition engine using n-heptane (C7H16) as fuel. Six different piston bowl geometries, five from the literature and proposed one, were utilized having different length-to-diameter ratio, curvature and sidewall radius. The study was conducted at 1750 r/min engine speed and a constant compression ratio with a full performance condition. The intake and exhaust valves have been considered as closed during the analysis to provide the variation of crank angle from 300 CA to 495 CA. The results showed that the piston bowl geometry has a significant impact on the rate of heat release, in-cylinder pressure, in-cylinder temperature, and emission trends in the engine. Among the piston bowl geometries studied, design DE and design DF exhibited better combustion characteristics and relatively lower emission trends compared to other designs. The observed rate of heat release, in-cylinder pressure and in-cylinder temperature magnitudes of these two geometries was higher in comparison to other geometries. Moreover, the trade-off for NOx emission was also observed higher for these piston bowl designs.
  • PublicationOpen Access
    EFFECT OF THE GEOMETRICAL PARAMETERS IN A DOMESTIC BURNER WITH CRESCENT FLAME CHANNELS FOR AN OPTIMAL TEMPERATURE DISTRIBUTION AND THERMAL EFFICIENCY
    (YILDIZ TECHNICAL UNIV, 2019-12-02) ÖZDEMİR, MEHMED RAFET; Sener, Ramazan; Ozdemir, Mehmed R.; Yangaz, Murat U.
    Domestic cookers are common tools of house appliances in the world and they have significant share in global energy consumption. Therefore, a small amount of improvement in efficiency would result in a huge drop in total energy and resource activity. This study aims at presenting numerically the thermal efficiency of a domestic burner with crescent-shaped flame channels by changing the distance from the cooker to the burner head and the diameter of the burner. The energy efficiency parameter was evaluated analyzing temperature distribution along the bottom surface of the cooker and unburnt HC, CO and NO emissions. Simulations have been carried out with methane as fuel for three different diameter and distance parameters. The results showed that the temperature on the surface and the emission values of unburnt CO, NO and HC decreased with increasing the cooker diameter and distance parameter.
  • Publication
    Combustion performance of hydrogen-enriched fuels in a premixed burner
    (TAYLOR & FRANCIS LTD, 2020) ÖZDEMİR, MEHMED RAFET; Yangaz, Murat Umut; Ozdemir, Mehmed Rafet; Sener, Ramazan
    Premixed burners have been widely used in many applications for both industrial and household appliances. For this reason, it is very important to enhance the combustion and emission efficiency of premixed burners because of their strong position in the global dimension. On the other hand, the addition of hydrogen to various fuels has been a research topic in the last decade due to its environmental and economic positive effects. In this study, the effect of hydrogen addition to different gaseous fuels at different rates has been investigated in a premixed burner. A numerical parametric study has been carried out using a commercial CFD code. The gaseous fuels namely; methane, propane, LPG and natural gas have been enriched by different hydrogen addition rates with a 10% increment. Moreover, the results of pure hydrogen have been presented. The results reveal that the combustion efficiency for all fuels has been affected positively with hydrogen enrichment except for certain gas compositions. Furthermore, this study has shown that the hydrogen addition in general, decreases the unburnt HC and CO emissions.
  • PublicationOpen Access
    Internal combustion engine heat release calculation using single-zone and CFD 3D numerical models
    (SPRINGER HEIDELBERG, 2018-06) GÜL, MEHMET ZAFER; Mauro, S.; Sener, R.; Gul, M. Z.; Lanzafame, R.; Messina, M.; Brusca, S.
    The present study deals with a comparative evaluation of a single-zone (SZ) thermodynamic model and a 3D computational fluid dynamics (CFD) model for heat release calculation in internal combustion engines. The first law, SZ, model is based on the first law of thermodynamics. This model is characterized by a very simplified modeling of the combustion phenomenon allowing for a great simplicity in the mathematical formulation and very low computational time. The CFD 3D models, instead, are able to solve the chemistry of the combustion process, the interaction between turbulence and flame propagation, the heat exchange with walls and the dissociation and re-association of chemical species. They provide a high spatial resolution of the combustion chamber as well. Nevertheless, the computation requirements of CFD models are enormously larger than the SZ techniques. However, the SZ model needs accurate experimental in-cylinder pressure data for initializing the heat release calculation. Therefore, the main objective of an SZ model is to evaluate the heat release, which is very difficult to measure in experiments, starting from the knowledge of the in-cylinder pressure data. Nevertheless, the great simplicity of the SZ numerical formulation has a margin of uncertainty which cannot be known a priori. The objective of this paper was, therefore, to evaluate the level of accuracy and reliability of the SZ model comparing the results with those obtained with a CFD 3D model. The CFD model was developed and validated using cooperative fuel research (CFR) engine experimental in-cylinder pressure data. The CFR engine was fueled with 2,2,4-trimethylpentane, at a rotational speed of 600 r/min, an equivalence ratio equal to 1 and a volumetric compression ratio of 5.8. The analysis demonstrates that, considering the simplicity and speed of the SZ model, the heat release calculation is sufficiently accurate and thus can be used for a first investigation of the combustion process.