Publication:
Functional alcohol-soluble double-decker phthalocyanines: synthesis, characterization, electrochemistry and peripheral metal ion binding

No Thumbnail Available

Date

2006

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

WORLD SCI PUBL CO INC

Research Projects

Organizational Units

Journal Issue

Abstract

In this study we report the preparation, physical characterization and electrochemistry of peripherally functionalized substituted ionophore double-decker lanthanide phthalocyanines, lanthanide bis-[(4,4',4,4')-tetrakis-(6-hydroxyhexylthio)phthalocyaninates], {M[Pc(S-C6H13OH)(4)](2)} (M = Pr-III, Yb-III, and Lu-III). All benzenes on the double-decker phthalocyanines are functionalized with hydroxyhexylsulfanyl moieties for potential use as metal ion binding and surface anchors. The double-decker phthalocyanines synthesized from the anhydrous metal salts {Ln(acac)(3)} and the corresponding 4-(6-hydroxyhexylthio)-1,2-dicyanobenzene exhibit ion-specific optical changes in the presence of Ag+ and Pd2+. Thio donors of the complexes coordinate to Ag+ and Pd2+ to give 4:1 metal-phthalocyanine complexes. Newly synthesized lanthanide double-decker phthalocyanines are soluble in methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), dimethylformamide (DMF), dimethylsulfoxide (DMSO), chloronapthalene, quinoline and less soluble in i-PrOH and acetonitrile. Electrochemical studies reveal that all lanthanide-base complexes undergo ligand-based redox processes. The smaller HOMO-LUMO gaps of the complexes indicate the existence of strong pi-orbital interactions between the rings of the sandwich. The newly synthesized compounds have been characterized by elemental analysis, FTIR, H-1 and C-13 NMR, MS (ESI and MALDI-TOF), UV-vis and EPR spectral data. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.

Description

Keywords

lanthanides, phthalocyanines, electrochemistry, aggregation, metal sensor, ionophore, LANGMUIR-BLODGETT-FILMS, RARE-EARTH COMPLEXES, SPECTROSCOPIC PROPERTIES, DINUCLEAR COMPLEXES, NI COMPLEX, (E,E)M M, PART 4, BEHAVIOR, LIGAND, MONO

Citation

Collections