Publication:
(2, J)-IDEALS IN COMMUTATIVE RINGS

dc.contributor.authorsYildiz, Eda; Tekir, Unsal; Koc, Suat
dc.date.accessioned2022-03-12T22:42:00Z
dc.date.available2022-03-12T22:42:00Z
dc.date.issued2020
dc.description.abstractLet A be a commutative ring with nonzero identity. In this paper, we introduce the concept of (2, J)-ideal as a generalization of J-ideal. A proper ideal P of A is said to be a (2, J)-ideal if whenever abc is an element of P and a, b, c is an element of A, then ab is an element of P or ac is an element of Jac(A) or be is an element of Jac(A). Various examples and characterizations of (2, J)-ideals are given. Also, we study many properties of (2, J)-ideals and use them to characterize certain classes of rings such as quasi-local rings and Artinian rings.
dc.identifier.doi10.7546/CRABS.2020.09.02
dc.identifier.issn1310-1331
dc.identifier.urihttps://hdl.handle.net/11424/236192
dc.identifier.wosWOS:000590892400002
dc.language.isoeng
dc.publisherPUBL HOUSE BULGARIAN ACAD SCI
dc.relation.ispartofCOMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectideal
dc.subjectJ-ideal
dc.subject(2, J)-ideal
dc.subject(2, n)-ideal
dc.subject2-ABSORBING PRIMARY IDEALS
dc.title(2, J)-IDEALS IN COMMUTATIVE RINGS
dc.typearticle
dspace.entity.typePublication
local.avesis.idf7f405fd-3220-41ce-b787-8c4e6cb4eef4
local.import.packageSS17
local.indexed.atWOS
local.indexed.atSCOPUS
local.journal.numberofpages9
local.journal.quartileQ4
oaire.citation.endPage1209
oaire.citation.issue9
oaire.citation.startPage1201
oaire.citation.titleCOMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES
oaire.citation.volume73

Files

Collections